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Abstract (EN)

In an attempt to describe how patterns emerge in biological systems, Alan Turing proposed a
mathematical model encapsulating the properties of such processes. It details a partial differen-
tial equation governing the dynamics of two or more substances, called morphogens, reacting and
diffusing in a specific manner, in turn generating what has now come to be denoted as Turing
patterns. In recent years, evidence has accumulated to support Turing’s claim and it has been
proposed that it is responsible for the dynamical characteristics of phenomena such as skin pig-
mentation and branching of lungs in vertebrates. The aim of this paper is to study how the choice
of model parameters and reaction kinetics influence the nature of patterns generated, as well as
explore how boundary control can be employed to generate pre-defined patterns and the efficiency
of this procedure. To simulate the patterns, the differential equation is solved in Python by means
of a spectral method using discretized space and time domains. The model parameters were then
studied to try to gain insight in their effects on the patterns yielded. The boundary control was
implemented in MATLAB using a difference method. The metric used for efficiency was taken to
be the energy expenditure of the boundary cells. The complex dynamics of the studied systems
make it difficult to draw valuable conclusions on the influence of the parameters, but the results
support the expected characteristics of the models used. The efficiency of the pattern generation
is deemed to be closely related to the amount of boundary control utilized.

KEYWORDS: Reaction-diffusion, Turing pattern, morphogen, Grier-Meinhardt, Schnakenberg,
numerical analysis, minimum energy control.



Abstract (SV)

I ett försök att beskriva hur mönster bildas i biologiska system föreslog Alan Turing en matematisk
modell som inbegriper egenskaperna hos s̊adana processer. Modellen utgörs av en partiell differen-
tialekvation som karaktäriserar dynamiken av tv̊a eller fler ämnen, s.k. morfogener, som reagerar
och diffunderar enligt vissa krav p̊a ett s̊adant sätt att s.k. Turing-mönster bildas. Med åren har
bevis framlagts som understöder Turings ansats och det har föreslagits att den kan förklara de
dynamiska processerna hos fenomen s̊asom hudpigmentering samt förgrening av lungor i ryggrads-
djur. Detta arbete ämnar utforska hur valet av modellparametrar och -reaktionskinetik p̊averkar
beskaffenheten hos de mönster som genereras, samt att studera hur randvärdeskontroll kan imple-
menteras för att generera förutbestämda mönster och utforska effektiviteten av denna process. För
att simulera mönster löses differentialekvationen i Python genom implementering av en spektral-
metod i diskretiserat rums- och tidsdomäner. Modellparametrarna undersöktes för att f̊a först̊aelse
kring deras inverkan p̊a de mönster som erh̊alls. Randvärdeskontrollen implementerades med hjälp
av en finit differensmetod i MATLAB där m̊attstocken för effektivitet valdes som energi̊atg̊angen
hos randcellerna. Systemets komplexa dynamik gjorde det sv̊arare att dra värdefulla slutsatser
om modellparametrarnas inverkan p̊a mönsterbildningen, men resultaten stödjer de förväntade
egenskaperna hos de modeller som användes. Det fastslogs att effektiviteten med vilken mönster
genererades var starkt sammankopplat med randvärdeskontrollens omfattning.

NYCKELORD: Reaktion-diffusion, Turing-mönster, morfogen, Grier-Meinhardt, Schnaken-
berg, numerisk analys, minimalenergikontroll
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1 Introduction

In 1952, in his paper ”The chemical basis of morphogenesis”, Alan Turing proposed a theory for
the biochemical mechanisms responsible for pattern formation in organisms. The model, a so-
called reaction-diffusion model, describes the reaction between and diffusion of two substances,
called morphogens. Turing hypothesized that initially, the system is spatially homogeneous and is
resistant to external perturbations. Interestingly, he proposed that given a minuscule perturbation
from this state, diffusion would drive the system unstable, moving it from its homogeneous steady
state, leading to a non-homogeneous, spatiotemporally stable pattern through the kinetics of the
two substances. In this paper, the model will be explored and used to simulate patterns akin to
those that emerge in nature, such as the pigmentation in marine animals.

The purpose of this model is to try to describe biological patterning processes and although
it is a grave simplification of the real world phenomena it is trying to describe, observations have
been made that support Turing’s theory. Skin patterning in fish have been replicated by means
of simulation and the dynamic properties that govern these patterns have been attributed to the
interaction between pigment cells, as described by Turing’s model [6]. Other processes also show
promising dynamical characteristics, such as limb formation [11] and the branching of lungs in
vertebrates [6], but these have yet to be confirmed to be governed by the Turing model.

Grier and Meinhardt found that the only condition required on a system to produce Turing
patterns is a short-range positive feedback, long-range positive feedback [3] [2]. This will be
explained in further detail. This broadens the scope of applications of the Turing pattern model.
It is actually not even required for the mode of transmission to be diffusion, there are other viable
candidates as well. Signaling phenomena such as chemotactic cell migration (movement of cells
due to chemical stimulus) [7], mechanochemical activity (activity brought about by the interplay
of mechanical and chemical energy) [4] and neuronal interactions [13] are all possible nominees. All
of these effects can give rise to periodic patterns given that the short-range positive feedback, long-
range positive feedback condition is satisfied. Revisiting the case of skin patterning in fish, although
experimental evidence points toward diffusion not being the mode of transmission responsible for
the patterning process, the reaction-diffusion Turing model can predict how the pattern moves
during fish growth [9].

(a) Deer [14] (b) Cheetah [15]

(c) Tapir [8] (d) Zebra [12]

Figure 1: Examples of furred animals whose patterns may stem
from processes similar to those posed by the Turing model.
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(a)

(b)

Figure 2: Examples of fish pigmentation patterns that have been
recreated by means of the Turing model. [6]

There are many aspects of the Turing model and great diversity in its applications, which
breeds a plethora of possible points of study. To limit the scope of this thesis, the questions to be
answered are

1. How does the choice of reaction model and its parameters affect the appearance of the
generated patterns?

2. How does the energy expenditure relate to the amount of control over the boundary?

Analysis of the Turing PDE was accomplished by means of numerical PDE solvers. To answer
the first question, an analysis was carried out with two different kinds of models of reaction.
The reaction models’ associated parameters were varied, whilst closely observing the resulting
visual differences in the generated Turing patterns, leading to conclusions about the parameters’
influence on the appearance of Turing patterns. The second question was answered by studying
boundary value control of the Turing model, formulating and solving a minimization problem of
the boundary value control, with the objective of minimizing a defined cost-function whose value
could be interpreted as the amount of expended energy. From the ensuing results, it was concluded
that the energy expenditure of boundary value control can be drastically decreased by increasing
the amount of control over the boundary.

This report is structured as follows. In section 2, some fundamental theory is presented about
both the Turing model and involved numerical methods. Also specifics about the implementation is
described. Subsequently, in section 3 the results obtained in the analysis is presented and discussed
in relation to the questions posed in this section. Finally, we conclude and summarize the report
in section 4.
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2 Theory and Method

2.1 Turing’s Model

Turing proposed a model for the emergence of patterns through reaction and diffusion of two
substances, called morphogens. To model the mechanisms of such a system, Turing proposed the
following equation [5]

∂u

∂t
= D∇2u+ f(u), f(u) =

[
f(u, v)
g(u, v)

]
, u =

[
u
v

]
, D =

[
Du 0
0 Dv

]
(1)

subject to boundary and initial conditions

where each element in the vector quantity, u, denotes the concentrations of each morphogen. D
is the diffusion matrix and will hereby be defined to be diagonal. Its elements are the diffusion
coefficients of u and v, denoted Du and Dv, respectively. The equation can be interpreted as the
diffusion equation with an added f(u) term describing the reaction of the two substances. This can
take on many different forms, since it models the specific so-called reaction kinetics of the system.
That is, the rates of reactions and reaction topology. In this paper, two such functions will be
examined. The first being the Grier-Meinhardt kinetics [5].{

f(u, v) = c1 − c2u+ c3
u2

(1+ku2)v

g(u, v) = c4u
2 − c5v

(2)

u denotes what is called an activator, promoting the synthesis of v and itself. v is an inhibitor,
inhibiting the production of u. c3

(1+ku2)v describes the rate of self-activation of u and also encap-

sulates the inhibiting effect of v on u. c4u
2 describes the activation of v by u at rate c4. c2 and

c5 correspond to the degradation of the respective morphogen and c1 is a constant describing the
rate of synthesis of u stemming from the reaction of a substrate or a constant feeding of u to
the system in general. The following equations shows a chemical reaction interpretation of the
Grier-Meinhardt kinetics.

u+ u
c33/(1 + ku2)v

GGGGGGGGGGGGGGGGGGGGA

inhibition
3u, u+ u

c4
GGGGGGGGGA

activation
2u+ v.

The second function is the Schnakenberg kinetics{
f(u, v) = c1 − c−1u+ c3u

2v

g(u, v) = c2 − c3u2v
. (3)

This is a so-called substrate-activator model. It was introduced by Schnakenberg as the simplest
possible model capable of forming Turing patterns [1]. u and v reside in a substrate of two
substances A and B. A can react to produce u and u can degrade to form A again. These
rates correspond to parameter c1 and c−1, respectively. B reacts to form v at rate c2. Also, two
molecules of u can react with one molecule of v to form three molecules of u at the reaction rate
of c3, which describes the last terms in both expressions of equation (3) [1]. Importantly, in the
Grier-Meinhardt model, the activator exhibits short-range action, while the inhibitor acts on long
range. This dynamic also holds true for u and v in the Schnakenberg model. The practial effect
of this is that Du << Dv. The following equations is a chemical reaction intepretation of the
Schnakenberg reaction function.

u
c−1

GGGGGGGBFGGGGGGG

c1
A, B

c2
GGGGGGA v, 2u+ v

c3
GGGGGGA 3u.

The parameters in each of these models define a parameter space Φ, but not all choices of pa-
rameters yield Turing patterns. A Turing pattern is a non-homogenenous pattern that is insensitive
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to initial conditions and temporally stable once it has settled. A common procedure for generating
Turing patterns involves three criteria. These are not necessary conditions for Turing patterns to
form, but serve as a good practice. Firstly, the initial morphogen concentrations are chosen to be a
homogeneous steady state. This is a stable equilibrium for equation (1), disregarding the diffusion
term. Phrased differently, it is a constant value for u, that makes equation (1) zero-valued. In
other words, the time derivative is zero and the concentrations will be unchanged with time. Since
∇2C = 0 for constant C, the only condition that needs to be satisfied is

f(u∗) = 0 (4)

u∗ is called the homogeneous steady state. Secondly, one should find parameters such that the
spatial system is locally unstable. Turing then found that if the system is offset slightly from
u∗, diffusion, that is normally a homogenizing phenomenon, can actually drive the system into
instability, leading to pattern formation. This is called diffusion driven instability (DDI) and
constitutes the second criterion as follows

fu + gv < 0

fugv − fvgu > 0

Dugv +Dvfu > 2
√
DuDv

√
fugv − fvgu > 0

, (5)

where fu, gu, fv and gv denote partial derivatives with respect to u and v, respectively. These
inequalities are evaluated at u∗, thus making them conditions on the parameters. These two
criteria define a subset Φ0 ⊆ Φ of the total parameter space that shuold permit the production
of spatial Turing patterns, but this should be verified by simulation. To reiterate, there must
be a short-range activation/long-range inhibition relationship between the two morphogens. As
noted above, this means the diffusion coefficient for the activator must be smaller than that of the
inhibitor. Below is a flowchart of the described pattern generation procedure. [11]

Figure 3: Flow chart of Turing pattern generation procedure.

2.2 PDE Solvers

Equation (1) is a non-linear PDE that in general is impossible to solve analytically. Thereby,
numerical methods must be employed to solve it. Two different methods were used. The first
one being the explicit-Euler finite difference method, discussed in section 2.2.1. This is used to
solve the second task regarding the boundary value control. This is mainly because it simplifies
the process of posing the problem as an optimization problem, because it is easy to implement
and although it is not as efficient as the other method implemented, it performs sufficiently well
in relation to the amount and magnitude of the simulations that were carried out.

The second method used is a spectral method. This was implemented since it aids in compu-
tational effort, which was important as a lot of simulations had to be completed. This is discussed
further section 2.2.2.

2.2.1 Finite Difference Method

Finite Difference methods are a class of techniques used for solving PDE’s. In this paper the
specific algorithm of choice is the explicit-Euler method, which can be implemented to solve (1)
numerically. All derivatives are approximated by finite differences and the time and space domain
are discretized uniformly as follows

Space domain = Ω = [0, Lx]× [0, Ly], Time domain = Ψ = [0, T ],
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0 = x0, ..., xN−1 = Lx, 0 = y0, ..., yM−1 = Ly, 0 = t0, ..., tF−1 = T,

with

∆x = xi+1 − xi = ∆y = yj+1 − yj = h, ∀i ∈ {0, ..., N − 2}, ∀j ∈ {0, ...,M − 2}

∆t = tn+1 − tn = k, ∀n ∈ {0, ..., F − 2}.
where uni,j , v

n
i,j represent the numerical approximations of u(xi, yj , tn) and v(xi, yj , tn), respectively.

N ,M will henceforth also be referred to as num∆x, num∆y respectively. Using the finite difference
approximations for the derivatives

∂u

∂t
=
un+1
i,j − uni,j

k

∇2u =
uni+1,j + uni−1,j + uni,j+1 + uni,j−1 − 4uni,j

h2

the explicit-Euler method transforms (1) into

un+1
i,j = uni,j +

Duk

h2
(uni+1,j + uni−1,j + uni,j+1 + uni,j−1 − 4uni,j) + kf(uni,j , v

n
i,j)

vn+1
i,j = vni,j +

Dvk

h2
(vni+1,j + vni−1,j + vni,j+1 + vni,j−1 − 4vni,j) + kg(uni,j , v

n
i,j)

Choosing boundary conditions and coupled with the perturbed homogeneous initial states for u
and v defined by (4), these sets of equations are solved for all time steps.

2.2.2 Spectral Method

The spectral method is a technique for solving PDE’s by instead writing the solution as a sum
of basis functions, the basis functions being those that make up a Fourier series, then utilizing
Fourier transforms to find the explicit solution. To do this numerically, this is done in a discretized
manner, with time and space domain discretized as in 2.2.1. There are a couple of the advantages of
posing the problem like this. The first one being the ease of differentiation in the frequency domain
compared to the time domain. Moreover, the error decreases exponentially with finer discretization
[10] and since the fast Fourier transform (FFT) can be used, the computational effort is decreased
drastically.

Again, the equation of interest is (1), which breaks apart into

∂u

∂t
= Du

(∂2u
∂x2

+
∂2u

∂y2

)
+ f(u, v) (6)

∂v

∂t
= Dv

(∂2v
∂x2

+
∂2v

∂y2

)
+ g(u, v) (7)

It is easier beginning by focusing on u(x, y, t), omitting f(u, v) and Du. The solution to the
above equation is represented in terms of its orthonormal basis functions ϕn(x)ψm(y).

u(x, y, t) =
∑
n

∑
m

ûnm(t)ϕn(x)ψm(y),

ϕn(x) = e2πinx/Lx , ψm(y) = e2πimy/Ly ,

where ϕn(x) and ψm(y) are the complex harmonic basis functions. Since ϕn, ψm are periodic they
imply periodic boundary conditions on the solution. A discretized approximation of u is sought,
where only N of ϕn(x) and M of ψm(y) are included. Hence, making the discretized ansatz for the
approximation of u [10]

u(x, y, t) =

N/2∑
n=−N/2+1

M/2∑
m=−M/2+1

ûnm(t)e2πinx/Lxe2πimy/Ly . (8)
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This describes the discrete inverse Fourier transform in 2 dimensions. The truncation of the
Fourier series will obviously lead to an error, but the error decreases exponentially with N so long
as u(x, y, t) is smooth, which is the case. The discrete Fourier transform and its inverse are defined
as follows

ujk = F−1{ûnm} =
N/2∑

n=−N/2+1

M/2∑
m=−M/2+1

ûnme
2πinj/Ne2πimk/M (9)

ûnm = F{ujk} =
1

NM

N−1∑
j=0

M−1∑
k=0

ujke
−2πinj/Ne−2πimk/M (10)

Inputting equation (8) into (6) yields

∂u

∂t
=

N/2∑
n=−N/2+1

M/2∑
m=−M/2+1

[(
2πin

Lx

)2

+

(
2πim

Ly

)2
]
ûnme

2πinx/Lxe2πimy/Ly ,

and its discretized counterpart

∂ujk
∂t

=

N/2∑
n=−N/2+1

M/2∑
m=−M/2+1

[(
2πin

Lx

)2

+

(
2πim

Ly

)2
]
ûnme

2πinj/Ne2πimk/M .

Now, substituting ûnm with (10)

∂ujk
∂t

=

N/2∑
n=−N/2+1

M/2∑
m=−M/2+1

[(
2πin

Lx

)2

+

(
2πim

Ly

)2
]
F{ujk}e2πinj/Ne2πimk/M ,

and identifying the right-hand side with the inverse Fourier transform (9), the expression is
simplified to

∂ujk
∂t

= F−1
{[(

2πin

Lx

)2

+

(
2πim

Ly

)2
]
F{ujk}

}
.

Finally, adding f(u, v) and Du, the final, discretized equation reads

∂ujk
∂t

= DuF
−1

{[(
2πin

Lx

)2

+

(
2πim

Ly

)2
]
F{ujk}

}
+ f(ujk, vjk). (11)

Analogously, the equation for v reads

∂vjk
∂t

= DvF
−1

{[(
2πin

Lx

)2

+

(
2πim

Ly

)2
]
F{vjk}

}
+ g(ujk, vjk) (12)

Again, using the perturbed homogeneous initial states for u and v described by (4). The system
of ordinary differential equations (11) and (12) can then be solved over the discretized time domain.

This procedure is implemented in Python, using fft2, ifft2 (numpy package) to compute the
2-dimensional discrete Fourier transforms by means of FFT and odeint (scipy package) to solve
the system of ODE’s.

2.3 Boundary Value Control

This report studies the properties of boundary control of the Turing PDE. Boundary control being
the control of a PDE through its boundary conditions. Specifically, Dirichlet boundary conditions
are chosen.
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Turing’s PDE can, as noted in section 2.1 be split up into two parts: a diffusion and a reaction
part

∂u

∂t
= D∇2u︸ ︷︷ ︸

diffusion

+ f(u)︸︷︷︸
reaction

, f(u) =

[
f(u, v)
g(u, v)

]
, u =

[
u
v

]
, D =

[
Du 0
0 Dv

]
(13)

u(x, y, t) = X(t), (x, y) ∈ ∂Ω

where X(t) is the external control function (boundary value control function). The reaction part
is linearized for simplification purposes and the resulting equation is discretized using the explicit-
Euler finite difference method, described in 2.2.1, yielding equations

dui,j

dt
= aui,j + bvi,j + p [ui,j + ui−1,j + ui,j−1 + ui,j+1 − 4ui,j ], (14)

dvi,j

dt
= cui,j + dvi,j + q [vi,j + vi−1,j + vi,j−1 + vi,j+1 − 4vi,j ]. (15)

↑ ↑
reaction diffusion

Using the same discretization as in section 2.2.1, the outermost grid points are defined as the
boundary. In defining the control problem, the concentration values of these points are gathered
in a discretized control function

X(tn) =

(
Xu(tn)
Xv(tn)

)
,

whereXu(tn) andX
v(tn) are column vectors containing the boundary cells of control in the domain

of morphogen u and v respectively, at time tn. Figure 4 depicts the location of the control variables
in a 5× 5 grid.

Figure 4: Depiction of the control points Xu
i , X

v
i in a 5x5 grid.

Having defined a discrete control function X(tn), equations (14) and (15) can be written as(
u(tn+1)
v(tn+1)

)
= A

(
u(tn)
v(tn)

)
+BX(tn).

A initial and final pattern of the morphogens u, v are contstruced, with the initial and final pattern
denoted as (

u0
v0

)
and (

uT
vT

)

7



respectively. The task is to find X(tn) =

(
Xu(tn)
Xv(tn)

)
for all time steps tn, n ∈ {1, . . . , F − 1}

that yield the final pattern in a desired time T . This requirement on the X(tn)’s can further be
transformed into

(
AF−1B AF−2B . . . AB B

)X(tF−1)
...

X(t0)

 =

(
uT
vT

)
−AF

(
u0
v0

)
(16)

which is the representation used in the implementation of the problem.
Specifically, this report studies so-called minimal energy control. Theoretically, if at least one

line of the boundary of the domain Ω is controlled, there are an infinite number of choices of X(t)
to generate any final pattern from any initial pattern. Introducing the cost function∫ T

0

||X(t)||2dt

with its discretized counterpart
F−1∑
n=0

||X(tn)||2∆t. (17)

one arrives at an optimization problem of finding a choice of X(tn)’s which minimizes its value.
The optimization problem can be formulated as

min
X(tn), n∈{0,...,F−1}

F−1∑
n=0

||X(tn)||2∆t

s.t.

(
u(tn+1)
v(tn+1)

)
= A

(
u(tn)
v(tn)

)
+BX(tn)

with u(0) =

(
u0
v0

)
, u(tF ) =

(
uT
vT

)
given.

MATLAB is used to numerically find a solution to the optimization problem, finding X(tn)’s
adhering to the constraint (16) whilst minimizing (17), using the nonlinear progamming solver
fmincon.
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3 Results and Discussion

3.1 Correctness of Implementation of Spectral Method

(a) (b)

(c) (d)

Figure 5: u and v after 1000 time steps using Schnakenberg
kinetics. Parameters: c−1 = 1, c1 = 0.1, c2 = 0.9, c3 = 1. (a)
and (b) are known results from [5]. (c) and (d) were generated
by our simulations.

Using the spectral method as described in section 2.2.2 a simulation was run with identical pa-
rameters as that of a simulation from article [5]. The model parameters are tabulated in table 1
with additional simulation parameters tend = 1000, L = 100 and num∆x = num∆y = 70. The
pattern at time t = 1000 in our simulation and the acrticle’s are depicted in figure 5. Figure 5a, 5b
are the known result from the article and 5c, 5d are our simulation results. When comparing the
aforementioned figures it is clearly visible that our implementation and method arrives at similar
results as that of [5] despite the fact that different boundary conditions were used. Periodic in our
case and zero-flux in the article. Thereby supporting the aptness of our results.
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parameter c−1 c1 c2 c3 Du Dv

value 1 0.1 0.9 1 1 40

Table 1: Parameters of the Schnakenberg model from figure (1)
in article [5].

3.2 Convergence

Continuing the analysis, studies were made into the convergence rate of the system with respect
to time. Apart from the long Scnakenberg simulation mentioned in section 3.1, two additional
long simulation (referred to as GM1 and GM2) with instead the Grier-Meinhardt kinetics and
parameters as in table 2 were carried out.

GM1 GM2
parameter value

c1 0 0
c2 0.5 0.5
c3 0.5 1.15
c4 0.5 0.5
c5 0.45 0.45
Du 0.1 0.1
Dv 2 2
k 0.238 0.081
tend 1500 1000
L 100 70

num ∆x 80 70

Table 2: Parameters used in long simulations with the Grier-
Meinhardt kinetics.

Figure 6 shows the concentrations of morphogens u and v at some different time steps for the
Schankenberg and GM1 simulation and figure 7 shows plots of

∑
|ui−ui+1|2 and

∑
|vi−vi+1|2 for

time steps i = 1, . . . , tF−1 in all three simulations. ui, vi denote the concentration matrices at time
step i, subtraction and exponentiation is done element wise, and the sum is taken over all elements
in the matrix. As visible in figures 6, 7 the system converges toward some stable configuration. As
t increases, the change of concentration between time step decreases roughly polynomially after
t = 200. When looking at figures 6, 7 the conclusion can be drawn that the prominent features of
the pattern, stemming from a set of parameters, becomes clear after about 200 time steps. It is
however not clear if this behaviour persists for all configurations of parameters. For our continued
analysis however, simulations will be run until about t = 200, with some variation depending on
the set of parameters, if necessary for drawing conclusions about the properties of the resulting
pattern.

3.3 Gridsize

Some analysis was also conducted regarding an appropriate choice of discretization for simulations
of the Turing PDE. Figure 8 depicts simulations results of the Schnakenberg model and the Grier-
Meinhardt model. A plethora of simulations were performed, where grid sizes were varied with
a fix domain size Lx = Ly = 30 and for different sets of parameters. As is noticeable, too large
choices of grid size results in a non-homogeneous spatiotemporally stable pattern being unable
to form, i.e finite size errors disrupting the dynamics of the Turing PDE, resulting in the system
converging towards a homogeneous distribution of concentration. The grid size for which these
errors seem to have a particularly pronounced effect, appear to depend on the size of the features
(for example spots or snakes) of the Turing pattern, which in turn depend on the parameter set

10



Figure 6: Concentrations of morphogens u, v (shown to the left)
at some different time steps (integers under the pattern pictures)
for two of the long simulations. The GM1 Grier-Meinhardt sim-
ulation with parameters as in table 2 in the upper part of the
figure, and the Schnakenberg simulation in the bottom part.

Figure 7: Plots of
∑
|ui− ui+1|2 and

∑
|vi− vi+1|2 for all time

steps in the long simulations.
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(which is discussed below). For our continued analysis, grid sizes will be chosen small enough
as to not noticeably disrupt the PDE dynamics whilst keeping the run time of our simulations
reasonably low.

Figure 8: Patterns generated with varying grid sizes using Grier-
Mienhardt (top) and Schnakenberg (bottom) kinetics.

3.4 Grier-Meinhardt

Firstly, the characteristics of the patterns evolving from the Grier-Meinhardt model and its pa-
rameters were studied. Simulations were performed to investigate the effect which the different
parameters has on the non-homogeneous diffusion driven pattern. Figures 9, 10 shows the patterns
at the last time step tend = 250 for a collection of simulations where one parameter at a time was
varied from the base set of parameters in table 3. The images in figures 9, 10 are depictions of
the concentration of morphogens u, v respectively, from corresponding simulations. The depicted
simulations are a selection from a larger set of simulations, where simulations of particular visual
interest were chosen. The general changes in appearance of the patterns have been compiled in
table 4.

parameter Du Dv c1 c2 c3 c4 c5 k
value 0.1 2.0 0.0 0.5 0.5 0.5 0.45 0.081

Table 3: Base parameter values for studies of the Grier-
Meinhardt kinetics.

This dynamic between the two substances, coupled with the complex dynamics of the system
give rise to the patterns in figures 9, 10. Upon varying a parameter in a permissible interval (in
terms of the DDI criteria), the pattern changes appearance due to the dynamics of the system
changing. The most general conclusion that can be drawn on the appearance in relation to pa-
rameter values is that certain values entail more connected structures (such as honeycombs or
snake-like patterns as seen in table 4), while others lead to a more scattered patterns (such as
spots/rods).

12



Figure 9: Simulations of u with the Grier-Meinhardt kinetics,
where one parameter at a time was varied (specified to the left)
from the set in table 3. Images are sorted in descending param-
eter values to the right.

behaviour decrease in value parameter increase in value behaviour
stripes/tendrils ← Du → rods/spots

spots/rods ← Dv → tight honeycomb
snake-like ← c1 → spots

spots ← c2 → rods/spots
honeycomb/snake-like ← c3 → tendrils/rods/spots

spots ← c4 → tendrils/rods/spots
tight honeycomb ← c5 → tendrils/rods/spots

Table 4: Compilation of the effect that the parameters of the
Grier-Meinhardt reaction function has on the appearance of the
generated Turing pattern.
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Figure 10: The corresponding simulations of figure 9 but instead
showing the concentration of morphogen v. For further details
see figure 9.

Figure 11: Reaction topology visualization of the Grier-
Meinhardt reaction kinetics.
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Morphogens u and v act as activator and inhibitor, respectively, as discussed in section 2.1.
Figure 11 shows a visualisation of the reaction topology of the Grier-Meinhardt activator inhibitor
model. The reason as to why the patterns of u and v appear similar in figures 9 and 10 in terms
of structure can be explained with this topology in mind. u can produce more of itself, while v
cannot, since its synthesis is dependent on u. Therefore, v is more prevalent in regions where there
is also a lot of u.

Dv denotes the diffusion rate of the inhibitor. One of the critical conditions for Turing patterns
is the long-range activation, short-range inhibition effect discussed in the introduction. Thus, Dv

has to be significantly larger than Du. As Dv is decreased, the ability of v to inhibit u is restricted
to taking effect locally, thus allowing u to spread in larger regions, without being scattered. Hence
the larger honeycomb-like pattern to the right in the Dv row of figure 9. This is supported by the
fact that the nature of the evolution of u is flipped for Du, since the ratio Dv/Du is increased with
decreasing Du, thus exaggerating the short-range activation/long-range inhibition effect (see the
Du row in figure 9).

Figure 12 depicts the variance of both morhpogen concentrations for different choices of pa-
rameter values. The variance is related to how much the peaks and troughs of the morphogen
concentrations vary in magnitude. Thus, a lower variance means the patterns are closer to a ho-
mogeneous state. Since the color range of the pictures in figures 9, 10 is fitted to the range of values
of the concentration, variance plots gives us further insight about the patterns. From figure 12b it
is deduced that the higher the value of Dv, the more pronounced the features in the corresponding
images in figure 9 are. So, the long-range inhibiting effect of v through Dv tends to accumulate u
in more distinct agglomerates. For lower Dv, where this effect is not as pronounced, the pattern
of u is more connected but not as conspicuous. The effect of increasing/decreasing Du, Dv are
mirrored, as was the case for the characteristics of patterns. This, again, owes to the ratio between
the two being of essence.

It is interesting to note that if Du, Dv are varied to a point where the ratio Dv/Du is insuffi-
ciently small, the parameter set fall outside of the DDI parameter space and the system converges
to a homogeneous state. The variance of Dv does not exhibit linear behavior, instead it drops off
to zero swiftly after a threshold. The value for which it becomes zero coincides with it falling out
of the permissible parameter space.

(a) Du (b) Dv (c) c1 (d) c2

(e) c3 (f) c4 (g) c5

Figure 12: Variances of morphogen concentration against the
varied parameters, corresponding to the images in figures 9 and
10.
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This entire discussion goes to show that the dynamics of this non-linear system is quite complex.
To further analyse the specifics of the nature of the generated patterns, such as why certain
parameter values tend to generate longer tendril-like structures, while others yield spots, would
perhaps require a more in-depth analysis of frequencies and modes of the system dynamics.

3.5 Schnakenberg

Secondly, the features of the patterns evolving from the Schnakenberg model and its parameters
were investigated. As in the previous section, parameters were varied one at a time from a base
set of parameters, with the base set of parameters given in table 1 (the parameters from article
[5]). Figures 13 and 14 show the patterns of u and v, respectively from corresponding simulations.
The simulation time was tend = 250. Each image corresponds to a unique parameter value. The
general changes in appearance of the patterns have been compiled in table 5.

Figure 13: Simulations of the Turing PDE with the Schnaken-
berg kinetics, showing the concentration of morphogen u, where
one parameter at a time was varied (specified to the left) from
set in table 1 and with smaller parameter values going to the
right.
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Figure 14: The corresponding simulations of figure 13 but in-
stead showing the concentration of morphogen v. For further
details see figure 13.

behaviour decrease in value parameter increase in value behaviour
stripes ← Du → spots
spots ← Dv → stripes
spots ← c−1 → blotches/tendrils

spots (larger) ← c1 → spots (smaller)
aligned spots ← c2 → spots
checkerboard ← c3 → spots

Table 5: Compilation of the effect which the parameters of the
Schnakenberg reaction function has on the appearance of the
generated Turing pattern.

Figure 15 depicts the reaction topology of the Schnakenberg substrate-activator model as dis-
cussed in section 2.1.
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Figure 15: Visualization of the reaction topology of the
Schnakenberg kinetics.

This topology is different from that of the Grier-Meinhardt model and thus results in different
Turing patterns. Here, the patterns of u and v appear inverted. This is due to u consuming v to
produce more of itself, so in regions where both of the morphogens are present, v will tend to be
consumed by u.

Shifting the focus to the diffusion coefficients, a large value of Du makes u spread out faster,
enabling it to react with and consume v producing larger areas where the concentration of u is
pronounced, as seen to the left on row Du in figure 13. For lower values, since it is not able to
distribute as readily, it will be confined to smaller areas. As was the case for the Grier-Meinhardt
kinetics, the inverse relation is true for Dv, again showing the significance of the ratio between the
two.

Turning the attention to figure 16, depicting the variances of the morphogens in the patterns,
it is evident that the patterns whose behavior are categorized as ”spots” in table 5 have higher
variance and are thus more distinct, than those on the other side of the behavioral spectrum.
The exception being c2 where there seems to be a trade-off between number of spots and spot
morphogen concentration, leading to a relatively constant variance for different parameter values.

(a) Du (b) Dv (c) c−1

(d) c1 (e) c2 (f) c3

Figure 16: Variances of morphogen concentration against the
varied parameters, corresponding to the images in figures 13
and 14.
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In general, the Schnakenberg model does not seem to be able to render as complex and varied
of a pattern spectrum as easily as the Grier-meinhardt model does. There are less parameters and
the models of the reaction kinetics differ in complexity. The simplicity on the other hand, makes
for a less burdensome process of parameter choice and yet captures the qualities of the Turing
pattern model.

3.6 Bundary Value Control

Studies of the properties of boundary value control were performed. With the change of program-
ming software of implementation, came also a change in the visualisation method of results. In
this section the concentration of morphogens u, v were visualized using the properties of the RGB
color model, with the concentration of morphogen u visualized via the amount of red in the fig-
ures and the concentration of morphogen v the amount of green in the pictures, with the effect
that occurrence of both morphogen u and v in the same cell resulting in a color tending towards
yellow. An analysis was carried out on the effect which the amount of grid points of control has
on the final value of the cost function when solving the optimization problem outlined in section
2.3. Tests were performed by varying the amount of points on the boundary of the defined space
domain which are optimized and letting the other boundary cells assume a value of zero. In figure
18 the cost of the control function which minimizes the cost has been plotted against the number
of boundary grid points of control. This by starting at an amount of grid points of control, which
successfully solved the optimization problem given the parameters in table 6

parameter a b c d p q
value 2 1 1 1 1 1

Table 6: Parameter values used when studying the relation be-
tween amount of grid points of control and cost, in the minimal
energy optimization problem.

and incrementally increasing the amount of boundary points of control. Additional paramaters for
simulation were: num∆x = num∆y = 20, tF = 5. All optimizations used the same initial pattern,
namely the pattern in which the concentration of u and v is zero at all points, and some different
final patterns where tested, as depicted in figure 17.

Figure 17: Some of the patterns used when studying the rela-
tion between amount of grid points of control and cost, in the
minimal energy optimization problem. The RGB value of red
denotes the concentration of u and green the concentration of
v.
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Figure 18: Plot of value of the cost function for the minimized
control function against number of pixels of control.

Figure 18 shows that the minimal cost for reaching a desired pattern via boundary value control
decreases drastically for an increased amount of points of control. This is intuitive since the degrees
of freedom for the minimization increases as the amount of grid points increases. As discussed in
2.3, theoretically, in the case of the continuous formulation of boundary control, equation (13), one
only needs to control one line of the boundary of the domain Ω to reach any desired pattern. This
however seemed not to be the case for our simulations. As discernible in figure 18 the minimum
amount of pixels of control studied was 105, when in fact one line of control would correspond
to only 18 pixels of control. Our implementation of the minimization problem couldn’t find any
choice of the X(tn)’s, at least within a reasonable run time, such that the constraint of equation
(16) was sufficiently satisfied for amounts of points of control below ∼ 105. The reason as to why
our implementation didn’t correspond with the theory could likely be credited to the discretization
of the model or the choice of tF in proportion to the diffusion coefficients Du, Dv. The latter, since
an insufficiently small choice of tF in relation to the diffusion coefficients could lead to the effects
of values of the concentration at the boundary not being able to reach all grid points sufficiently
within the given time frame. These effects could be further studied, but our analysis was enough
to establish some general behaviour between the amount of grid points and the cost of the reached
minimized control function.
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4 Conclusions

To summarize, Turing’s model exhibits great complexity and it is difficult to draw valuable con-
clusions about the nature of the generated patterns solely on the basis of parameter choice. No
real explanation was found as to why specific structures (like honeycomb patterns) emerged, how-
ever some rough trends could be noticed. The difference in topology between the two reaction
models had the most pronounced effect, Grier-Meinhardt and Schnakenberg giving rise to vastly
dissimilar relationships between u and v in the generated patterns. In general, the Schnakenberg
model did not seem to be able to render as complex and varied of a pattern spectrum as easily as
the Grier-meinhardt model did. Specifically, the patterns generated by the Grier-Meinhardt model
exhibited tendril-like patterns and patterns connected to a larger degree than those generated by
the Schnakenberg model, which were instead mostly scattered. There are on the other hand less
parameters in the latter and the topology of the reaction kinetics differ in complexity. The simplic-
ity makes for a less burdensome process of parameter choice. Studying minimal energy control of
the Turing PDE it was concluded that an increase in amount of grid points of control substantially
decreases the energy expenditure.
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