Computational Fabrication

CS 491 and 501
Professor. Leah Buechley
https:.//handandmachine.org/classes/computational_fabrication

Daily Artist: Piotr Wasniowski

https://www.instagram.com/piotr wasniowski/

5 2D Bravais Lattice Structures

S e e . . . /7
/‘/37&7/ . | ¥ . i
g =y WP '

Oblique lattice (@ # b, y = arbitrary) Square lattice (@ = b, y = 90°) Rectangular lattice (@ # b, y = 90°)

Hexagonal lattice (a = b, y = 120°) Rhombic lattice (@ = b, y = arbitrary)
Centered rectangular lattice

Bravais Lattice Structures

Any periodic 2D tiling maps to one of these 5
fundamental lattice structures.

5 2D Bravais Lattice Structures

S e e . . . /7
/‘/37&7/ . | ¥ . i
g =y WP '

Oblique lattice (@ # b, y = arbitrary) Square lattice (@ = b, y = 90°) Rectangular lattice (@ # b, y = 90°)

Hexagonal lattice (a = b, y = 120°) Rhombic lattice (@ = b, y = arbitrary)
Centered rectangular lattice

What we’ll do today

1. Write code to generate these 2D lattices,

ILluminating some fundamental tiling
geometry

2. Use our lattice generating code to
generate 2D tiles and tilings

Build in GH Rhino

iiiiiiii

+ o2 o3 0T E

https./tiled.art/en/create/?id=-Quadi

How we’ll do it

1. Generate lattice & basic tiling

a) python block 1:
input: a (length), b (length), and angle
outputs: joined ab curve + list of a and b vectors

b) python block 2, outputs:
lattice: translate ab curve using vectors
tiling: a closed curve (tile) for each lattice cell. outputs is list of tiles

2. Generate Escher tiling

a) add complex (Escher) a, b line inputs to python block 1. scale and
rotate these complex curves to map to a and b vectors. add
complex (Escher) ab curve output to python block 1.

b) Use new output as input to python block 2

FYI & proceed w/ caution

- We'll be navigating some awkward data representation
Issues to get python data structures to be accessible &
visualizable in GH & Rhino. No 2D lists/arrays in GH!!

- Also navigating some gaps in rhinoscript implementation for
python 3. In particular: no implementation of python copy
and deepcopy yet.

« S50, code is a bit awkward. If you get confusing compile
errors or if you can't see your geometry in Rhino, refer back
to these slides and check details carefully.

open up Rhino and Grasshopper

o0 @ Grasshopper - No document...

Pa’?mslMaths Sets Vector Curve Surface Mesh Intersect Transform Display Pufferfish PanelingTools Kangaroo2

L

Grid Snap

Ortho Planar

SmartTrack

Untitled

1

History \W CHONM |
v

Gumball

FHENED - IEREE

onto the canvas,

- ¥
.

@mmamd

sineTwist

Duplicatemoves

lllustratorimport

Either drag a new
double click the canvas to create a new coznem | i

K o, ANTD G,
CRRmEC I
9608
RNV S
& %% T
o o [0 @ =

/;\ Persistent
) One shot

End
() Near
Point
Midpoint
Center
Intersection
Perpendicular
Tangent
Quadrant
Knot
] Vertex
() On curve
On surface
On polysurface
On mesh
Project

n surfaceWithPattern mod_lace_example

Standard | CPlanes | Set View l Display 1 Select 1 Viewport Layout 1 Visibility 1 Transform 1 Curve Tools 1 Surface Tools 1 Solid Tools 1 SubD Tools 1 Mesh Tools 1 Re|

MNP POHPEO.DEll aeead 0 H00O0RLlDPELE ==

Perspective | Top

|

Perspective

| Perspective | Right | Layouts...

One lattice cell

Parametric lattice: 3 simple variables

NERNES Y)
NERNA— :
) NEANKIANEIAN

» vy (@angle)

Grasshopper & Python

* Inputs: - <
- a length, b length \\ \\ SN
-angle L L W
« Qutputs:

- Jolined ab curve
- list of a and b vectors

Grasshopper & Python Code

Inputs: | D B :
-alength, b length BL_—we

_li“—“‘__“ﬁw_‘—_“ b/ angle (gl
- angle

input: Float Type hints

Outputs:
- Joined ab curve, ‘lines’
- list of a and b vectors

Grasshopper & Python Code

import rhinoscriptsyntax as rs
import math

#calculate x y points for a vector
ax = axmath.cos(math.radians(angle))
ay = axmath.sin(math.radians(angle))

create a and b vectors

origin = [0,0,0]

a_vector = rs.CreateVector([ax,ay,0])
b_vector = rs.CreateVector([b,0,0])
vectors = [a_vector, b_vector]

create lines so that the direction is
counterclockwise around future tile
b_line = rs.AddLine(b_vector,origin)
a_line = rs.AddLine(origin,a_vector)
lines = rs.JoinCurves([b_line, a_line])

D
p—
—

angle

| Python

vectors

Grasshopper & Python Code

import rhinoscriptsyntax as rs
import math

#calculate x y points for a vector
ax = axmath.cos(math.radians(angle))
ay = axmath.sin(math.radians(angle))

create a and b vectors

origin = [0,0,0]

a_vector = rs.CreateVector([ax,ay,0])
b_vector = rs.CreateVector([b,0,0])
vectors = [a_vector, b_vector]

)

create lines so that the direction is
counterclockwise around future tile

b_line = rs.AddLine(b_vector,origin)
a_line = rs.AddLine(origin,a_vector)
lines = rs.JoinCurves([b_line, a_line])

D
p—
—

angle

| Python

vectors

questions?

Generating the Lattice

Copy and translate cell using vectors

* |Inputs:

- lines

- vectors

- size of lattice

- Qutput:
- 2D lattice
as list of tiles
tile = closed curve

New Python Block

® | n p utS ' a out 4 curves out %
m i . .
- C u rV@S ; b i lines S @ lattice_vis
~(angle vectors = lattice

- vectors 4 size s
- 02 ‘ D/

- size of (square) lattice

curves: Curve type hint

o OUtpUt: vectors: ?fi%tfgetife hint,
- lattice (2D list) Srentype it
- lattice visualization
(1D list)

- tiles (1D list)
tile = closed curve

To generate 2D Lattice

- Copy input curves and translate along
a and b vectors

- Use geom.Curve.Duplicate to copy

« Use rs.MoveObject() to translate

To generate 2D Lattice

import rhinoscriptsyntax as rs
import Rhino.Geometry as geom
import math

generate lattice
copy input curves
move them in 2D, using input vectors,
to generate lattice
lattice = []
lattice_vis = []
for i in range (size+1l):
row = []
for j in range (size+1):
copy curves
new_curves = geom.Curve.Duplicate(curves)
rs.MoveObject(new_curves,vectors[0]xi)
rs.MoveObject(new_curves,vectors[1]xj)
lattice_vis.append(new_curves)
row.append(new_curves)
lattice.append(row)

curves

vectors

size

{out

lattice_vis

lattice

b

Crv

Grasshopper & Python Data Structures

» Python: lists of any dimension

« Grasshopper: 1D lists and trees only
- Can't manipulate data from 2+D structures
- Can't render/visualize data from 2+D structures

- Some rhinoscript geometry/GH data structures are
actually (secret) lists. (ie: joined curves, polylines)
S0, you have to nagivate them carefully too.

2D Lattice Output: Can’t visualize

out))

lattice_vis D

lattice {0;0;0)

0 System.Collections.Generic.List 1[System.Object]

1 System.Collections.Generic.List 1[System.Object]

2 Qvaetem Canllertinne Generic T.iaet Y1 [SQwvetem Oh-bdecrt]

2D Lattice Output: Can’t visualize

{O;O;O}i
0 Polyline Curve

1 Polyline Curve > ¢ GH doesnlt Work
2 Polyline Curve \x/ith ZD “StS

Soofl *© That'swhywe

System.Collections.Generic.List 1

[System.Object] need 1D

System.Collections.Generic.List 1 . .
[System.Object] lattl Ce_VIS
System.Collections.Generic.List 1

L [System.Object]

out

3 Polyline Curve

lattice_vis

lattice

\ J
/ \
[o) (

Connect Curve Block to lattice vis

lout

lattice_vis Crv])

lattice

questions?

Lattice —> Tiles
2D List of Open Curves —> 1D List of Closed Curves

« Two tasks:
1. Generate Tiles (Closed Curves) from lattice
2. Generate 1D List of tiles as output

Find Tile Edges & Generate Tile

generate tiling

find the edge curves for each lattice cell
generate a closed tile shape curves out
add to list of tiles lattice_vis
tiles = [] vectors i
for i in range(0,size): lattice
for j in range(0,size): ' size tiles
bottom_left = latticel[i] [j] —

top = rs.ExplodeCurves(latticel[i+1][j]) [0]
right = rs.ExplodeCurves(latticel[i] [j+1]) [1]
tile = rs.JoinCurves([bottom_left, top, right])
if (rs.CloseCurve(tile)):

tile = rs.CloseCurve(tile)
else:

print("can't close tile curve")
tiles= tiles+tile

Find Tile Edges & Generate Tile

generate tiling
find the edge curves for each lattice cell
generate a closed tile shape
add to list of tiles
tiles = []
for i in range(0,size):
for j in range(0,size):
bottom_left = latticel[i] [j]
fop = rs.ExplodeCurves(lattice[i+1][j]) [0]]

right = rs.ExplodeCurves(lattice[i] [j+1]) [1]
tile = rs.JoinCurves([bottom_left, top, rightl)
if (rs.CloseCurve(tile)):

tile = rs.CloseCurve(tile)
else:

print("can't close tile curve")
tiles= tiles+tile

get top and right edges

Find Tile Edges & Generate Tile

generate tiling
find the edge curves for each lattice cell
generate a closed tile shape
add to list of tiles
tiles = []
for i in range(@,size):

for j in range(0,size):
bottom_left = latticel[i] [j]
top = rs.ExplodeCurves(lattice[i+1][j]) [0]
right = rs.ExplodeCurves(lattice[i] [j+1]) [1]
tile = rs.JoinCurves([bottom_left, top, rlght])
" if (rs.CloseCurve(tile)):

tile = rs.CloseCurve(tile)
else:

print("can't close tile curve")
tiles= tiles+tile

make sure you're
generating closed tile

Adding outputs for tile edges
may be useful for troubleshooting

—J out D
cccccc : -
ice D
=(vectors tiles D
bottom_left
size lob
right

questions?

A simple tiling

A

What we’ll do today

1. Generatelattice

2. Generate Escher tiling

a) add complex (Escher) a, b line inputs to python block 1. scale and
rotate these complex curves to map to a and b vectors. add
complex (Escher) ab curve output to python block 1.

b) Use new output as input to python block 2

Escher Tiling

Approach

. Allow complex Escher input curves as ab curves for
second python block.

. Input curve requirements:
- a curve: begins at origin and ends at point on y axis
- b curve: begins at origin and ends at point on x axis

. Edit first Python block
- Accept Escher curves as input
- Output appropriately scaled and rotated Escher curves.

questions?

Draw Curves in Rhino

- a curve: begins at origin and ends at point ony axis
- b curve: begins at origin and ends at point on x axis

Turn on Grid Snap and
Use Curve—>Freeform—>Interpolate Points

Curve Surface SubD Solid Mesh Drafting

Point Object >
Point Cloud >
Line >
Polyline >
Rectangle >
Polygon 24
Free-Form >] Control Points
. Interpolate Points
Circle > : :
Handle Curve FH [] | Perspective | Top | Front | Right | Layouts...
Arc > Sketch : Successfully read file "/Users/Leah/Desktop/_research/_teaching/23_computational_fabrication/GH_Rhino_files/slicer_prep.gh"
EIIIpse > O ‘= CPlane x22.882 y-12.691 z0 Millimeters] Default Grid Snap Ortho Planar

Draw Curves in Rhino

- a curve: begins at origin and ends at point ony axis
- b curve: begins at origin and ends at point on x axis

a curve a curve

b curve

b curve

Draw Curves in Rhino

Save this Rhino file to preserve your curves.

a curve a curve

b curve

b curve

Associate Curves with GH object

== &.

Geo
v (& Preview
(@] Enabled
Bake...

I.| Runtime warnings >

Wire Display >
2] Reverse

Flatten

Graft

(Y] Simplify

Set one Geometry

v Q Preview
(] Enabled
& Bake...

Wire Display >

q a_ a_curve &

Create a Geometry "Geom" block

Right click on it and choose “Set
one Geometry”

. Select the a curve you drew In

Rhino. It should turn green.

Right click on block and rename it
to a_curve

Do the same thing for your b curve.
Name it b_curve

Add Inputs for these curves to 1st Python Block

Scale Curves to fit a and b lengths

1. Use rs.CurveEndPoint() to find end points of curves.

2. What does the end point tell us about the length of
curve a?

3. Use rs.ScaleObject() to scale each curve
4. What is the scale factor for curve a?

#scale input curves to fit specified lengths
#get current length of both curves

a_end = rs.CurveEndPoint(a_curve)

a_length = a_end.Y

a_scale = [a/a_length,a/a_lengthl]

a_curve= rs.ScaleObject(a_curve,origin,a_scale)

Scale Curves to fit a and b lengths

input curve

scaled curve

Rotate Curves to fit Lattice

1. Which curves do we have to rotate?
2. What is the rotation angle in terms of the input angle?

#rotate a_curve to correct orientation
a_curve = rs.RotateObject(a_curve,origin,angle-90)

curves = rs.JoinCurves([a_curve,b_curve])

Rotate Curves to fit Lattice

input curve

rotated curve

questions?

Connect Curves to Tiling Code

085

091

©30

<
@
" Q
N o
(] 7))

It should just work :)

Connect Curves to Tiling Code

Tiles with lines Tiles with Escher curves

Connect Curves to Tiling Code

Rendered view in Rhino

If it doesn’t just work

out

« Check to make sure
you're generating a
closed tile with your
new curves. Look at
tiles edges.

curves : N
lattice_vis

lattice

tors (Y il
vectors (o tiles
bottom_left

top

right

« Tile generation will
ot D
also dgpenq onthe _J_ o
order in which you B e
P . vectors [BFoll tiles D
joined curves in the pottom_left p———_cv p
first Python block. o ==
-Crv D i

Y L)

questions?

Edit Rhino curves to get
different Escher tilings

.\A -
/ s
\
/ N\
P - N
|
AN N .
/7
— - — N
AN AN e
S/ /
L N - \ \,
/" N\ e
. \ _, -~
/ /s
\ / . AN

Rendered view in Rhino

Generating Printable 3D Tiles

Offset Tile Shape for Physical Tiling

E Offset Curve I
—— Q Offset Surface
E |

off {f Offset Curve
Offset a curve with a specified distance

Create an Offset Curve GH block

. Create a Data Dam GH block to

prevent expensive computations from
triggering when you change
parameter values

. Connect your tiles to the C (curve)

input through the Data Dam block

. Create a float number slider

Range of number slider: -3.0 to 3.0

. Connect number slider to the D

(distance) input of Offset Curve block
Negative number: offset in
Positive number: offset out

Create Tile Surface

reate planar surfaces from a collection of boundary edge curves. |

] . Boundary Surfaces

1. Create a Boundary Surfaces
GH block

2. Connect the C output from Offset to
the E input to Boundary

Extrude Surface to Generate 3D Tile

L ' Extrude k |
. Extrude Along |
9 Extend CUNEI ' Extrude
3 xtrude points, cur

d

E

1. Create an Extrude GH block

2. Create a Vector GH block and
provide a number slider input for Z.

3. Connect the S output from Boundary
to B on Extrude and the V output
from Vector to D

questions?

Add Some Color

Wireframe view in Rhino Rendered view in Rhino

tiling = []

2nd Python Block

for i in range (len(lattice)-1):
for j in range (len(lattice)-1):
bottom_left = latticel[il [j]
top = rs.ExplodeCurves(lattice[i+1][j]) [0] urves
right = rs.ExplodeCurves(lattice[i] [j+1]) [1]

out

lattice

ict latti is D
tile = rs.JoinCurves([bottom_left,top,right]) clors gyiattice_vis
if (rs.CloseCurve(tile)): e o128, 128, 0
tile = rs.CloseCurve(tile) 10,0,0
2128,128,0
else:
30,0,0
print("can't make a closed tile") 4128,128,0

tiling = tiling+tile
[if (i%2==0 and j%2==0):
coloring.append("128,128,0")
elif (i%2==1 and j%2==1):
coloring.append('128,128,0")
else:
coloring.append("0,0,0")

Add Some Color

E m——— [| 1. Create an Custom Preview GH block
| %E Custom Preview i 2. Connect the output of the Extrude
block to G (geometry) input.
? | Flatten the output from Extrude.
B 3 Bake.. I | 3. Connect the coloring output to the M
QR Disconnect i (materials) input.
- [@] Reverse -

T
| L
>
\ M =
from coloring output a

1

Add Some Color

out
curves
lattice
vectors lattice_vis
tiling
size A
coloring
[Distance

[Z component

]

Boundar

Play with Coding & Color Patterns

Play with Different Input Curves

— [|
Y | \
L)

questions?

Thank you!

CS 491 and 501
Professor. Leah Buechley
https:.//handandmachine.org/classes/computational_fabrication

