# **Computational Fabrication**

CS 491 and 591 Professor: Leah Buechley <u>https://handandmachine.org/classes/computational\_fabrication</u>

# Daily Artist: Piotr Waśniowski

https://www.instagram.com/piotr\_wasniowski/

### 5 2D Bravais Lattice Structures



**Oblique lattice** ( $a \neq b, \gamma = arbitrary$ )



**Square lattice** ( $a = b, \gamma = 90^{\circ}$ )



**Rectangular lattice** ( $a \neq b$ ,  $\gamma = 90^{\circ}$ )



**Hexagonal lattice** ( $a = b, \gamma = 120^{\circ}$ )



**Rhombic lattice** ( $a = b, \gamma = arbitrary$ ) Centered rectangular lattice

### **Bravais Lattice Structures**

Any periodic 2D tiling maps to one of these 5 fundamental lattice structures.

### 5 2D Bravais Lattice Structures



**Oblique lattice** ( $a \neq b, \gamma = arbitrary$ )



**Square lattice** ( $a = b, \gamma = 90^{\circ}$ )



**Rectangular lattice** ( $a \neq b$ ,  $\gamma = 90^{\circ}$ )



**Hexagonal lattice** ( $a = b, \gamma = 120^{\circ}$ )



**Rhombic lattice** ( $a = b, \gamma = arbitrary$ ) Centered rectangular lattice

# What we'll do today

- Write code to generate these 2D lattices, illuminating some fundamental tiling geometry
- 2. Use our lattice generating code to generate 2D tiles and tilings

# Build in GH Rhino

| filed.art | Home Art Artists Create Symmetries About |
|-----------|------------------------------------------|
|           |                                          |
|           |                                          |
|           |                                          |
|           |                                          |
| 66        |                                          |
| <b>*</b>  |                                          |
| <b>*</b>  |                                          |
|           |                                          |
|           |                                          |
|           |                                          |
| +         |                                          |
| - 1       | ţ                                        |
|           |                                          |
|           |                                          |
|           |                                          |
|           |                                          |
|           |                                          |
|           |                                          |

https://tiled.art/en/create/?id=Quad1

# How we'll do it

- 1. Generate lattice & basic tiling
  - a) python block 1:
    input: a (length), b (length), and angle
    outputs: joined ab curve + list of a and b vectors
  - b) python block 2, outputs:
     lattice: translate ab curve using vectors
     tiling: a closed curve (tile) for each lattice cell. outputs is list of tiles
- 2. Generate Escher tiling
  - a) add complex (Escher) a, b line inputs to python block 1. scale and rotate these complex curves to map to a and b vectors. add complex (Escher) ab curve output to python block 1.
  - b) Use new output as input to python block 2

### FYI & proceed w/ caution

- We'll be navigating some awkward data representation issues to get python data structures to be accessible & visualizable in GH & Rhino. No 2D lists/arrays in GH!!
- Also navigating some gaps in rhinoscript implementation for python 3. In particular: no implementation of python copy and deepcopy yet.
- So, code is a bit awkward. If you get confusing compile errors or if you can't see your geometry in Rhino, refer back to these slides and check details carefully.

# open up Rhino and Grasshopper

| Grasshopper - No document                                                                                  | 💿 💿 💿 Untitled — Edited                                                                                                                   |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Params Maths Sets Vector Curve Surface Mesh Intersect Transform Display Pufferfish PanelingTools Kangaroo2 | Grid Snap Ortho Planar SmartTrack Gumball History 🖓 🕞 🔘 🔳 Default                                                                         |  |  |  |  |  |  |  |  |
| 3 000 00                                                                                                   | Standard CPlanes Set View Display Select Viewport Layout Visibility Transform Curve Tools Surface Tools Solid Tools SubD Tools Mesh Tools |  |  |  |  |  |  |  |  |
| ⊘ � ⊘ ⊗ ⊘ ⊕ ⊕ 💫 ● ⊟ 🔛 🕿 ⇔ 🍐                                                                                | 🖑 🕹 🖉 💬 🖉 🏷 🖉 📱 📥 📥 🖉 🎜 🙋 🖗 🖉 🆓 💱 🌞 🗮 🗮 🖛 🗮 🌮                                                                                             |  |  |  |  |  |  |  |  |
| Geometry + Primitive + Input + Util +                                                                      | ₩ ¥                                                                                                                                       |  |  |  |  |  |  |  |  |
|                                                                                                            | E Perspective   Top   Perspective   Right   Layouts                                                                                       |  |  |  |  |  |  |  |  |
|                                                                                                            | Command                                                                                                                                   |  |  |  |  |  |  |  |  |
| Either arag a new component onto the canvas,<br>double click the canvas to create a new component          |                                                                                                                                           |  |  |  |  |  |  |  |  |
| or open an existing document via the menu or the tiles.                                                    |                                                                                                                                           |  |  |  |  |  |  |  |  |
|                                                                                                            |                                                                                                                                           |  |  |  |  |  |  |  |  |
|                                                                                                            |                                                                                                                                           |  |  |  |  |  |  |  |  |
|                                                                                                            |                                                                                                                                           |  |  |  |  |  |  |  |  |
|                                                                                                            | 🗛 👶 ን 🔭 🏗                                                                                                                                 |  |  |  |  |  |  |  |  |
|                                                                                                            |                                                                                                                                           |  |  |  |  |  |  |  |  |
|                                                                                                            |                                                                                                                                           |  |  |  |  |  |  |  |  |
|                                                                                                            |                                                                                                                                           |  |  |  |  |  |  |  |  |
|                                                                                                            |                                                                                                                                           |  |  |  |  |  |  |  |  |
|                                                                                                            |                                                                                                                                           |  |  |  |  |  |  |  |  |
|                                                                                                            | y y                                                                                                                                       |  |  |  |  |  |  |  |  |
|                                                                                                            |                                                                                                                                           |  |  |  |  |  |  |  |  |
|                                                                                                            | One shot                                                                                                                                  |  |  |  |  |  |  |  |  |
|                                                                                                            | Perspective                                                                                                                               |  |  |  |  |  |  |  |  |
|                                                                                                            | Point                                                                                                                                     |  |  |  |  |  |  |  |  |
|                                                                                                            | C Midpoint                                                                                                                                |  |  |  |  |  |  |  |  |
|                                                                                                            |                                                                                                                                           |  |  |  |  |  |  |  |  |
|                                                                                                            | Perpendicular                                                                                                                             |  |  |  |  |  |  |  |  |
|                                                                                                            | Quadrant                                                                                                                                  |  |  |  |  |  |  |  |  |
| > month > month                                                                                            | C Knot                                                                                                                                    |  |  |  |  |  |  |  |  |
| IllustratorImport Duplicatemoves sineTwist                                                                 | O On curve                                                                                                                                |  |  |  |  |  |  |  |  |
|                                                                                                            | On surface                                                                                                                                |  |  |  |  |  |  |  |  |
| > month > month                                                                                            | On polysurface                                                                                                                            |  |  |  |  |  |  |  |  |
| sine surfaceWithPattern mod_lace_example                                                                   | Project                                                                                                                                   |  |  |  |  |  |  |  |  |

### One lattice cell

### Parametric lattice: 3 simple variables



• a

```
• b
```

γ (angle)

### Grasshopper & Python

- Inputs:
  - a length, b length
  - angle



- Outputs:
  - joined ab curve
  - list of a and b vectors

### Grasshopper & Python Code

- Inputs:
  - a length, b length
  - angle



input: Float Type hints

- Outputs:
  - joined ab curve, "lines"
  - list of a and b vectors



### Grasshopper & Python Code

import rhinoscriptsyntax as rs
import math

```
#calculate x y points for a vector
ax = a*math.cos(math.radians(angle))
ay = a*math.sin(math.radians(angle))
```

```
# create a and b vectors
origin = [0,0,0]
a_vector = rs.CreateVector([ax,ay,0])
b_vector = rs.CreateVector([b,0,0])
vectors = [a_vector, b_vector]
```

# create lines so that the direction is # counterclockwise around future tile b\_line = rs.AddLine(b\_vector,origin) a\_line = rs.AddLine(origin,a\_vector) lines = rs.JoinCurves([b\_line, a\_line])





### Grasshopper & Python Code

import rhinoscriptsyntax as rs
import math

```
#calculate x y points for a vector
ax = a*math.cos(math.radians(angle))
ay = a*math.sin(math.radians(angle))
```

```
# create a and b vectors
origin = [0,0,0]
a_vector = rs.CreateVector([ax,ay,0])
b_vector = rs.CreateVector([b,0,0])
vectors = [a_vector, b_vector]
```

# create lines so that the direction is # counterclockwise around future tile b\_line = rs.AddLine(b\_vector,origin) a\_line = rs.AddLine(origin,a\_vector) lines = rs.JoinCurves([b\_line, a\_line])





# questions?

# Generating the Lattice

# Copy and translate cell using vectors

- Inputs:
  - lines
  - vectors
  - size of lattice
- Output:
  - 2D lattice as list of tiles tile = closed curve



### New Python Block

- Inputs:
  - curves
  - vectors
  - size of (square) lattice
- Output:
  - lattice (2D list)
  - lattice visualization (1D list)
  - tiles (1D list) tile = closed curve



curves: **Curve** type hint vectors: **Vector** type hint, list access size: **int** type hint



### To generate 2D Lattice

- Copy input curves and translate along a and b vectors
- Use geom.Curve.Duplicate to copy
- Use **rs.MoveObject()** to translate





#### To generate 2D Lattice

```
import rhinoscriptsyntax as rs
import Rhino.Geometry as geom
import math
```

```
# generate lattice
# copy input curves
# move them in 2D, using input vectors,
# to generate lattice
lattice = []
lattice_vis = []
for i in range (size+1):
    row = []
    for j in range (size+1):
       # copy curves
       new_curves = geom.Curve.Duplicate(curves)
        rs.MoveObject(new_curves,vectors[0]*i)
        rs.MoveObject(new_curves,vectors[1]*j)
        lattice_vis.append(new_curves)
        row.append(new_curves)
    lattice.append(row)
```





### Grasshopper & Python Data Structures

- Python: lists of any dimension
- Grasshopper: 1D lists and trees only
  Can't manipulate data from 2+D structures
  Can't render/visualize data from 2+D structures
- Some rhinoscript geometry/GH data structures are actually (secret) lists. (ie: joined curves, polylines)
   So, you have to nagivate them carefully too.

### 2D Lattice Output: Can't visualize



### 2D Lattice Output: Can't visualize



- GH doesn't work with 2D lists
- That's why we need 1D lattice\_vis

### Connect Curve Block to lattice\_vis



# questions?

#### Lattice —> Tiles 2D List of Open Curves —> 1D List of Closed Curves

- Two tasks:
  - Generate Tiles (Closed Curves) from lattice
     Generate 1D List of tiles as output

# Find Tile Edges & Generate Tile

```
# generate tiling
# find the edge curves for each lattice cell
# generate a closed tile shape
# add to list of tiles
tiles = []
for i in range(0,size):
    for j in range(0,size):
        bottom_left = lattice[i][j]
        top = rs.ExplodeCurves(lattice[i+1][j])[0]
        right = rs.ExplodeCurves(lattice[i][j+1])[1]
        tile = rs.JoinCurves([bottom_left, top, right])
        if (rs.CloseCurve(tile)):
            tile = rs.CloseCurve(tile)
        else:
            print("can't close tile curve")
        tiles= tiles+tile
```





# Find Tile Edges & Generate Tile

```
# generate tiling
# find the edge curves for each lattice cell
# generate a closed tile shape
# add to list of tiles
tiles = []
for i in range(0,size):
    for j in range(0,size):
        bottom_left = lattice[i][j]
        top = rs.ExplodeCurves(lattice[i+1][j])[0]
        right = rs.ExplodeCurves(lattice[i][j+1])[1]
        tile = rs.JoinCurves([bottom_left, top, right])
        if (rs.CloseCurve(tile)):
            tile = rs.CloseCurve(tile)
        else:
            print("can't close tile curve")
        tiles= tiles+tile
```

get top and right edges

# Find Tile Edges & Generate Tile

```
# generate tiling
# find the edge curves for each lattice cell
# generate a closed tile shape
# add to list of tiles
tiles = []
for i in range(0,size):
    for j in range(0,size):
        bottom_left = lattice[i][j]
        top = rs.ExplodeCurves(lattice[i+1][j])[0]
        right = rs.ExplodeCurves(lattice[i][j+1])[1]
        tile = rs.JoinCurves([bottom_left, top, right])
        if (rs.CloseCurve(tile)):
            tile = rs.CloseCurve(tile)
        else:
            print("can't close tile curve")
        tiles= tiles+tile
```

make sure you're generating closed tile

# Adding outputs for tile edges may be useful for troubleshooting



Crv

right

# questions?

# A simple tiling





# What we'll do today

#### 1. Generate lattice

- a) python block 1: takes a, b, and angle as input and outputs joined ab curve + a and b vectors
- b) python block 2: translates ab curve using vectors and outputs lattice
   generates a closed curve (a tile) for each lattice cell and outputs a list of tiles
- 2. Generate Escher tiling
  - a) add complex (Escher) a, b line inputs to python block 1. scale and rotate these complex curves to map to a and b vectors. add complex (Escher) ab curve output to python block 1.
  - b) Use new output as input to python block 2

# Escher Tiling

# Approach

- 1. Allow complex Escher input curves as **ab** curves for second python block.
- 2. Input curve requirements:
  - a curve: begins at origin and ends at point on y axis
  - **b** curve: begins at origin and ends at point on x axis
- 3. Edit first Python block
  - Accept Escher curves as input
  - Output appropriately scaled and rotated Escher curves.

# questions?

### Draw Curves in Rhino

- a curve: begins at origin and ends at point on y axis
- b curve: begins at origin and ends at point on x axis
Turn on Grid Snap and

Use Curve—>Freeform—>Interpolate Points

| Curve     | Surface | SubD | Solid  | Mesh       | Drafting |       |                |                  |             |            |               |          |              |            |           |          |
|-----------|---------|------|--------|------------|----------|-------|----------------|------------------|-------------|------------|---------------|----------|--------------|------------|-----------|----------|
| Point Ob  | oject   | >    |        |            |          |       |                |                  |             |            |               |          |              |            |           |          |
| Point Clo | bud     | >    |        |            |          |       |                |                  |             |            |               |          |              |            |           |          |
| Line      |         | >    |        |            |          |       |                |                  |             |            |               |          |              |            |           |          |
| Polyline  |         | >    |        |            |          |       |                |                  |             |            |               |          |              |            |           |          |
| Rectang   | le      | >    |        |            |          |       |                |                  |             |            |               |          |              |            |           |          |
| Polygon   |         | >    |        |            |          |       |                | У                |             |            |               |          |              |            |           |          |
| Free-Foi  | rm      | >    | Contro | ol Points  |          |       |                |                  | _X          |            |               |          |              |            |           |          |
| Circle    |         |      | Interp | olate Poin | ts       |       |                |                  |             |            |               |          |              |            |           |          |
| Circle    |         | ,    | Handle | e Curve    |          |       |                |                  | Perspe      | ective     | Top           | Front    | Righ         | t   L      | ayouts    |          |
| Arc       |         | >    | Sketch | ı          |          | : Suc | cessfully read | l file "/Users/L | eah/Desktop | /_research | n/_teaching/2 | 23_compu | tational_fab | rication/G | H_Rhino_f | iles/sli |
| Ellipse   |         | >    |        | -          |          |       | CPlane         | x 22.882         | y -12.691   | z 0        | Millir        | neters   | Default      | :          | Grid Sna  | p C      |

### Draw Curves in Rhino

- a curve: begins at origin and ends at point on y axis
- b curve: begins at origin and ends at point on x axis





### Draw Curves in Rhino

#### Save this Rhino file to preserve your curves.





### Associate Curves with GH object

|         | -                  |   |
|---------|--------------------|---|
| Ge Ge   | eo                 |   |
| ~       | Preview            |   |
|         | Bake               |   |
|         | 🤤 Runtime warnings | > |
|         | Wire Display       | > |
|         | Reverse            |   |
|         | Flatten            |   |
|         | Im Graft           |   |
| _       | Simplify           |   |
|         | Set one Geometry   |   |
|         |                    |   |
|         |                    |   |
| Ca_c a_ | _curve             |   |
|         | Preview            |   |

Enabled
 Bake...
 Wire Display

>

- 1. Create a Geometry "Geom" block
- 2. Right click on it and choose "Set one Geometry"
- 3. Select the a curve you drew in Rhino. It should turn green.
- 4. Right click on block and rename it to a\_curve
- 5. Do the same thing for your b curve. Name it b\_curve

#### Add Inputs for these curves to 1st Python Block



### Scale Curves to fit a and b lengths

- 1. Use **rs.CurveEndPoint()** to find end points of curves.
- 2. What does the end point tell us about the length of curve **a**?
- 3. Use **rs.ScaleObject()** to scale each curve
- 4. What is the scale factor for curve **a**?

```
#scale input curves to fit specified lengths
#get current length of both curves
a_end = rs.CurveEndPoint(a_curve)
a_length = a_end.Y
a_scale = [a/a_length,a/a_length]
a_curve= rs.ScaleObject(a_curve,origin,a_scale)
```

### Scale Curves to fit a and b lengths



### Rotate Curves to fit Lattice

- 1. Which curves do we have to rotate?
- 2. What is the rotation angle in terms of the input angle?

```
#rotate a_curve to correct orientation
a_curve = rs.RotateObject(a_curve,origin,angle-90)
```

```
curves = rs.JoinCurves([a_curve,b_curve])
```

#### Rotate Curves to fit Lattice



# questions?

### Connect Curves to Tiling Code



# It should just work :)

### Connect Curves to Tiling Code



### Connect Curves to Tiling Code



Rendered view in Rhino

# If it doesn't just work

- Check to make sure you're generating a closed tile with your new curves. Look at tiles edges.
- Tile generation will also depend on the order in which you joined curves in the first Python block.



# questions?

### Edit Rhino curves to get different Escher tilings



Rendered view in Rhino

### Generating Printable 3D Tiles

# Offset Tile Shape for Physical Tiling



- 1. Create an **Offset Curve** GH block
- 2. Create a **Data Dam** GH block to prevent expensive computations from triggering when you change parameter values
- 3. Connect your tiles to the C (curve) input through the Data Dam block
- 4. Create a float number slider Range of number slider: -3.0 to 3.0
- 5. Connect number slider to the D
  (distance) input of Offset Curve block
  Negative number: offset in
  Positive number: offset out

### Create Tile Surface



- 1. Create a **Boundary Surfaces** GH block
- 2. Connect the C output from Offset to the E input to Boundary

### Extrude Surface to Generate 3D Tile



- 1. Create an **Extrude** GH block
- 2. Create a **Vector** GH block and provide a number slider input for Z.
- 3. Connect the S output from Boundary to B on Extrude and the V output from Vector to D

# questions?

### Add Some Color



Wireframe view in Rhino

Rendered view in Rhino

# 2nd Python Block

```
coloring = []
for i in range (len(lattice)-1):
    for j in range (len(lattice)-1):
        bottom_left = lattice[i][j]
        top = rs.ExplodeCurves(lattice[i+1][j])[0]
        right = rs.ExplodeCurves(lattice[i][j+1])[1]
        tile = rs.JoinCurves([bottom_left,top,right])
        if (rs.CloseCurve(tile)):
            tile = rs.CloseCurve(tile)
        else:
            print("can't make a closed tile")
        tiling = tiling+tile
        if (i%2==0 and j%2==0):
            coloring.append("128,128,0")
        elif (i%2==1 and j%2==1):
            coloring.append("128,128,0")
        else:
            coloring.append("0,0,0")
```

tiling = []



### Add Some Color

| Long and the second sec |                                |                |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------|--|
| Cus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tom Preview                    |                |  |
| Cus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tom Preview Materials<br>previ | Custom Preview |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                |  |
| EXT E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E                              |                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 🥥 Bake                         |                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Disconnect                     | >              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reverse                        |                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                |  |



- 1. Create an **Custom Preview** GH block
- 2. Connect the output of the Extrude block to G (geometry) input.Flatten the output from Extrude.
- 3. Connect the coloring output to the M (materials) input.



### Add Some Color



### Play with Coding & Color Patterns



### Play with Different Input Curves



# questions?

# Thank you!

CS 491 and 591 Professor: Leah Buechley <u>https://handandmachine.org/classes/computational\_fabrication</u>