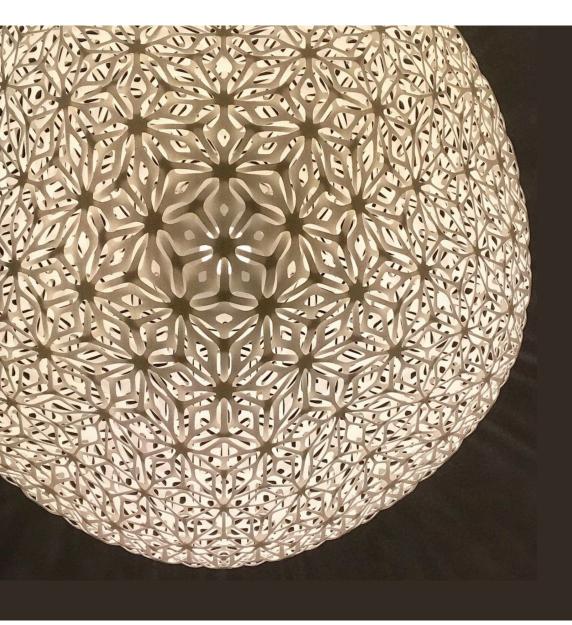

Computational Fabrication

CS 491 and 591 Professor: Leah Buechley https://handandmachine.cs.unm.edu/classes/Computational_Fabrication_Spring2021/


Artist: Travis Fitch

<u>https://fitchwork.com/</u> <u>https://www.instagram.com/fitchwork/</u> <u>https://www.futurecurrent.net/travis-fitch</u>

Travis Fitch

Travis Fitch

Travis Fitch

Class Schedule Check In

Week 11, October 28: Tiling Tuesday Introduction to Tiling Categories of tiles and tilings Escher Tile Design Website Thursday Bravais lattices and periodic tilings Constructing tiles and tilings Small Assignment: Final Project Proposals Week 12, November 4: Tiling cont.

Tuesday	Tiling cont. Tiling non-planar surfaces Surface morph	
Thursday	Guest lecture: <u>Scott Hudson</u>	Small Assignment: Scott Hudson research

Week 13, November 11

Tuesday	Large Assignment 5: Tiling

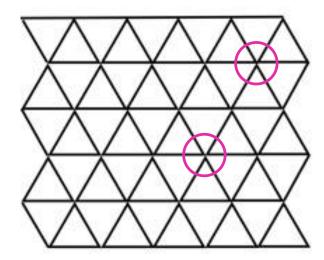
Tiling Huge topic! We'll scratch the surface a little.

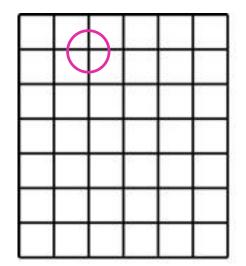
2D Tiling/Tessellations

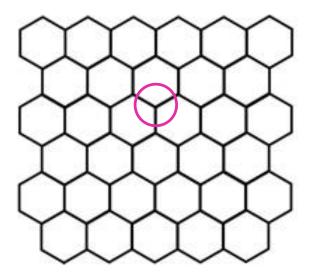
What is a Tiling?

A **tiling** (of the plane) is a collection of **tiles** (subsets of the plane), which cover the plane without gaps or overlaps. We also require that each tile consists of a single connected piece without holes or lines.

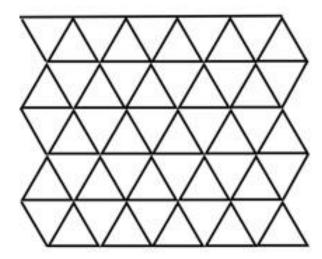
http://pi.math.cornell.edu/~mec/2008-2009/KathrynLindsey/PROJECT/Page1.htm

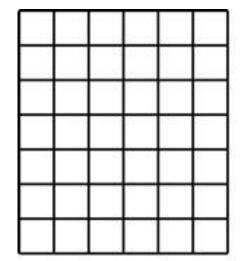

Regular Tilings

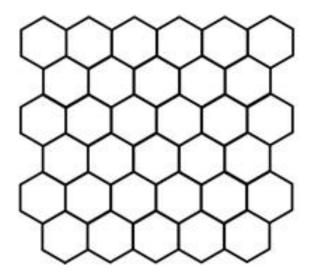

Tiling by a single regular polygon


Regular polygon: shapes where all sides and angles are the same

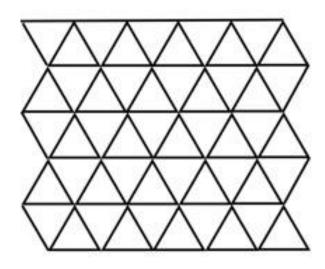
Regular tiling: all vertices are the same

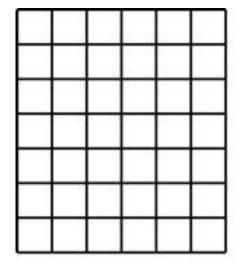

3 Regular Tilings

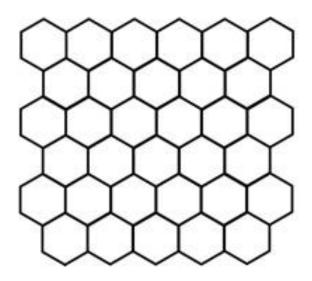




The Only Regular Tilings!

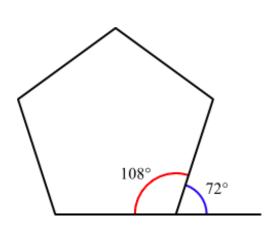


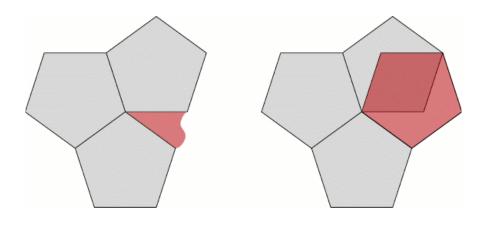




Why?

interior angle x integer = 360

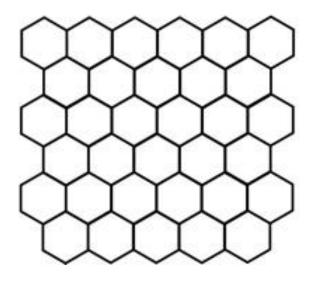

angle = 60 60 x 6 = 360

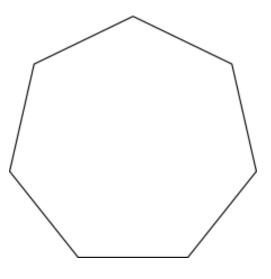

angle = 90 90 x 4 = 360

angle = 120 120 x 3 = 360

Why not Pentagons?

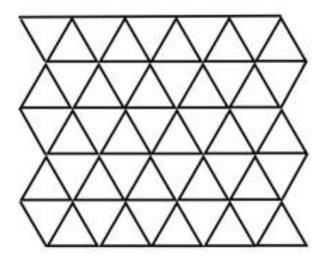
interior angle x integer = 360

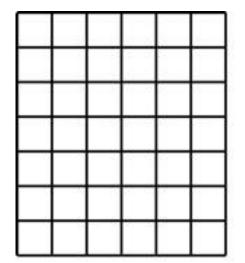


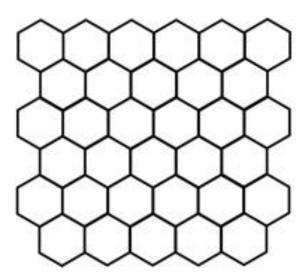

pentagon interior angle = 108 108 x 3 = 324

108 × 4 = 432

Why not greater than 6 sides?

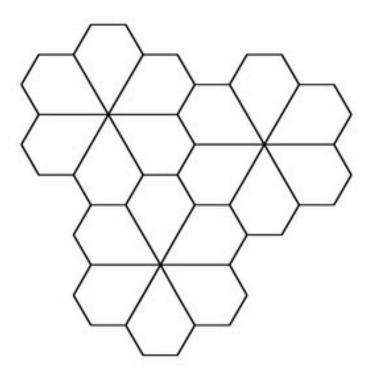



angle = 120 120 x 3 = 360

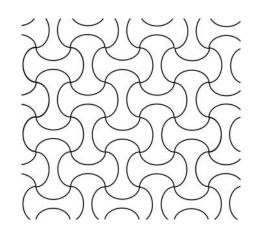


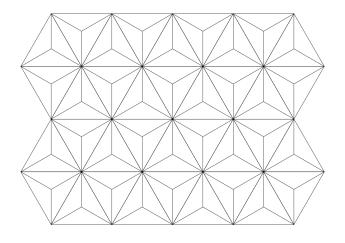
heptagon angle = 128 128 x 3 = 384

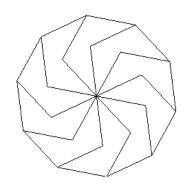
There are Only 3 Regular Tilings

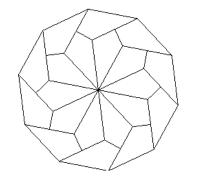


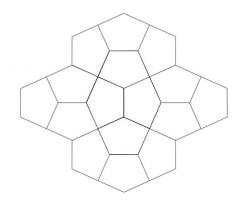
Monohedral Tilings

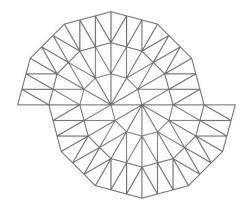

Tiling by a single shape


No other constraints


Example: a tiling with nonregular pentagons

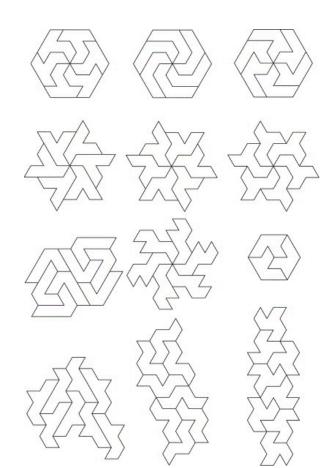



Lots of Monohedral Tilings!



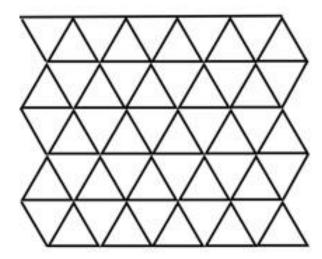
Monohedral Tilings: a Question

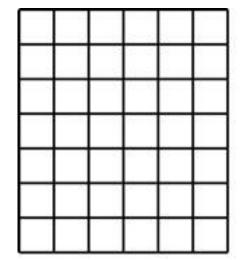
If you are given a tile, can you determine if it tiles the plane?

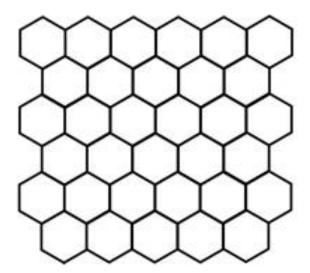

Monohedral Tilings: a Question

If you are given a tile, can you determine if it tiles the plane?

An open question!

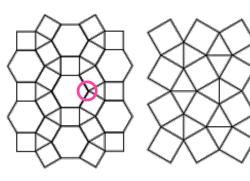

May be undecidable. We don't know!

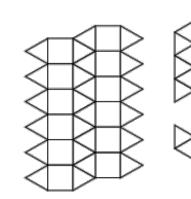

http://www.ams.org/notices/201003/rtx100300343p.pdf http://math.tsukuba.ac.jp/ant/Sympo/GS_kyoto1.pdf http://www.cs.bc.edu/~straubin/cs385-07/tiling

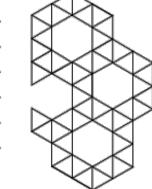


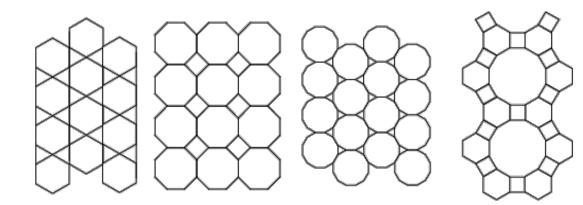
Lots of interesting open tiling questions in CS theory!

Back to Regular Tilings

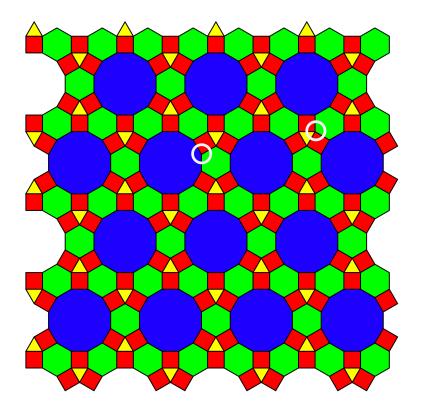



Semi-Regular Tilings


Tilings by one or more regular polygons


All vertices are the same

Eight Semi-Regular Tilings

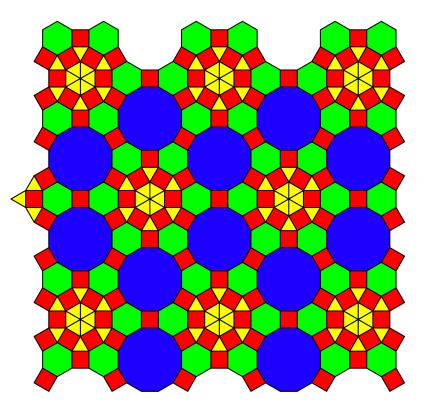


Demi-Regular Tilings

Also known as 2-Uniform Tilings

Tilings by one or more regular polygons

Two types of vertices



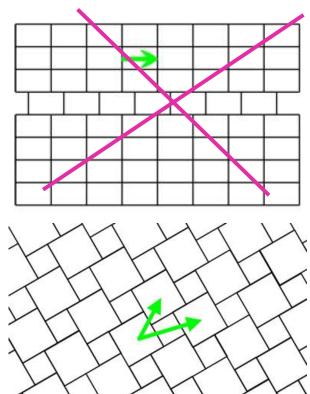
k-Uniform Tilings

Tilings by one or more regular polygons

k types of vertices

Example: 5-uniform tiling

https://en.wikipedia.org/wiki/List of k-uniform tilings

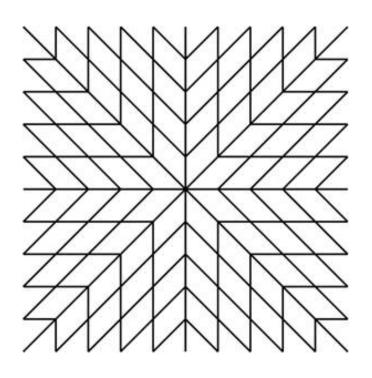

Different Kinds of Tilings

Periodic Tilings

A tiling that you can replicate **by translation** in at least two non-parallel directions.

Think about wallpaper. A tiling you can create a wallpaper from.

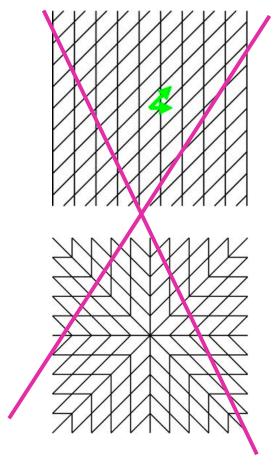
http://pi.math.cornell.edu/~mec/2008-2009/KathrynLindsey/PROJECT/Page4.htm


Nonperiodic Tilings

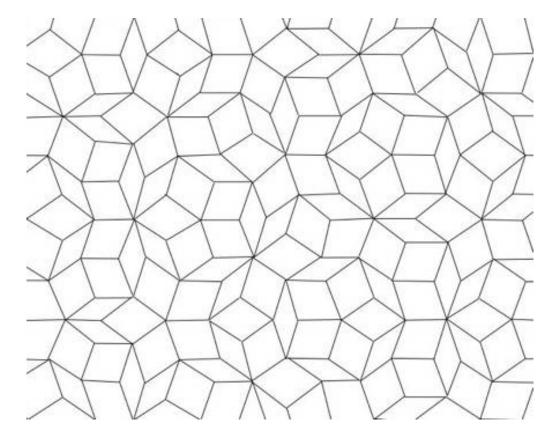
A tiling that you cannot replicate **by translation**

Think about wallpaper. A tiling you cannot create a wallpaper from.

Note: does not rule out radial symmetry


http://pi.math.cornell.edu/~mec/2008-2009/KathrynLindsey/PROJECT/Page4.htm

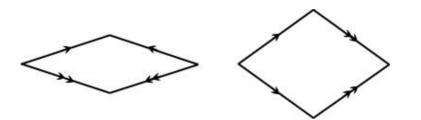
Aperiodic Tilings


A set of tiles that can **only** create Non-periodic tilings.

Negative example on the right.

http://pi.math.cornell.edu/~mec/2008-2009/KathrynLindsey/PROJECT/Page5.htm

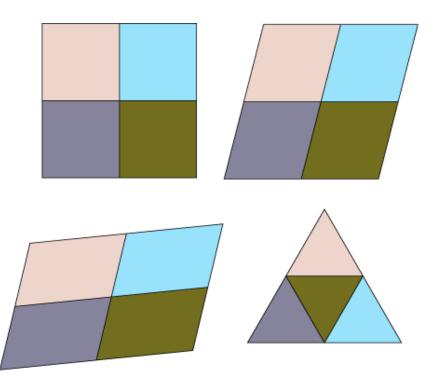
Aperiodic Tiling: Penrose Tiling

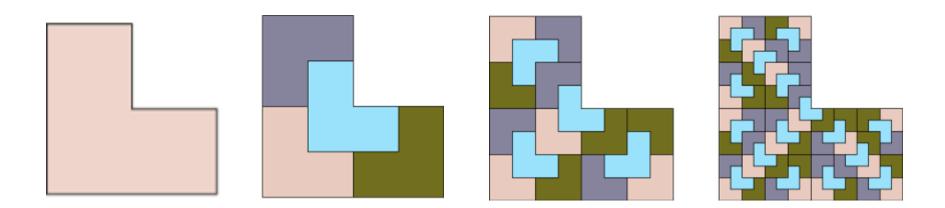


http://pi.math.cornell.edu/~mec/2008-2009/KathrynLindsey/PROJECT/Page5.htm

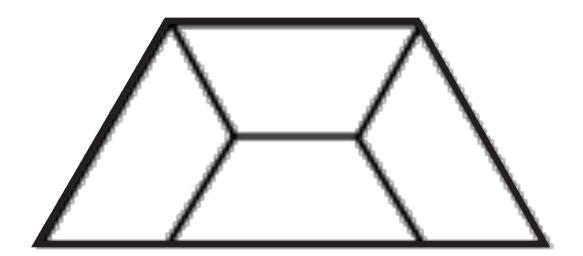
Tiles

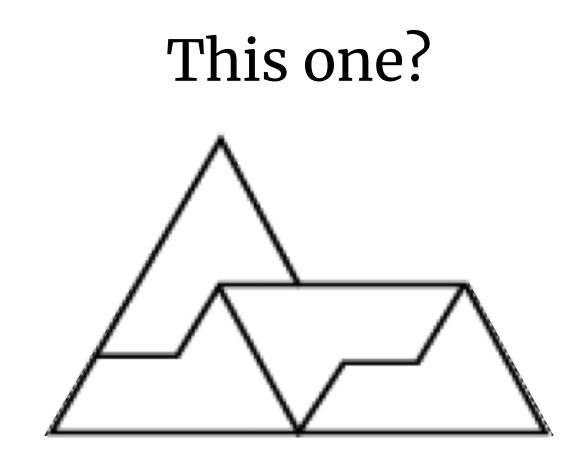
Aperiodic Tiling: Penrose Tiling


Tiles


Note: does not rule out radial symmetry

Rep Tiles Self-Similar/Fractal Tiles


Rep-Tiles

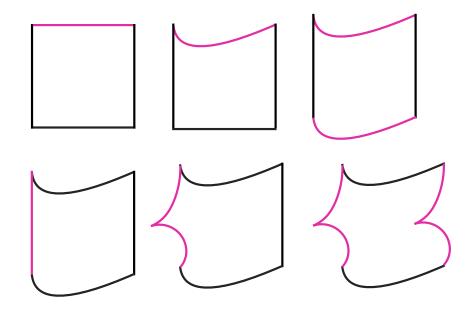


Rep-Tiles Can you break the shape into 4 copies of itself?

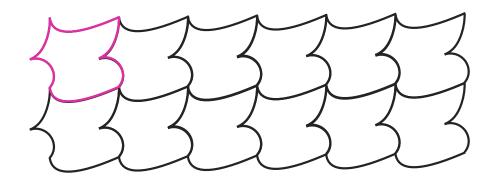
This one?

Escher Tiles

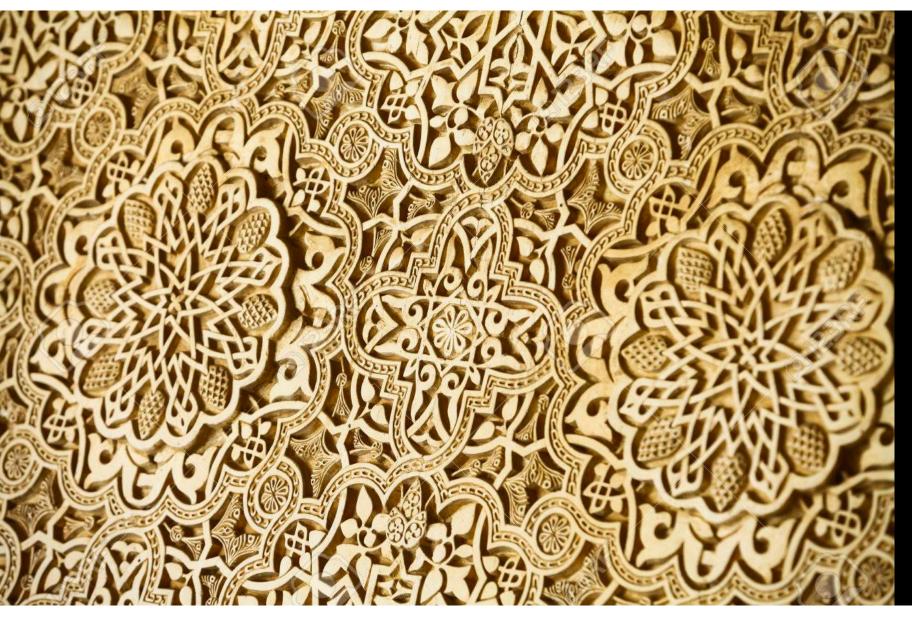
M.C. Escher



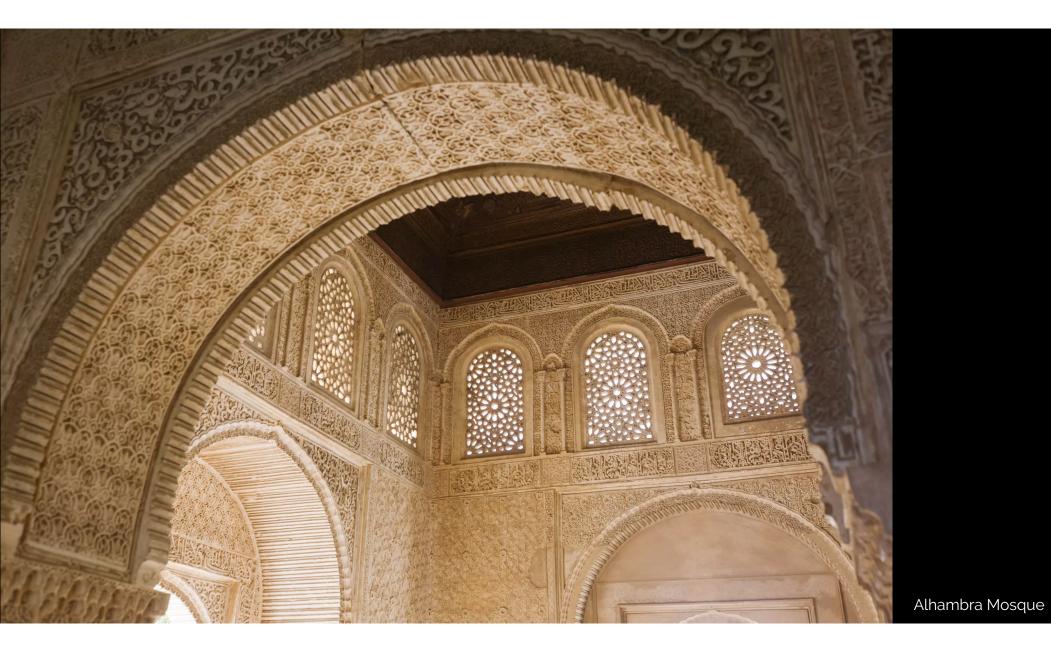
Creating Interesting Tiles

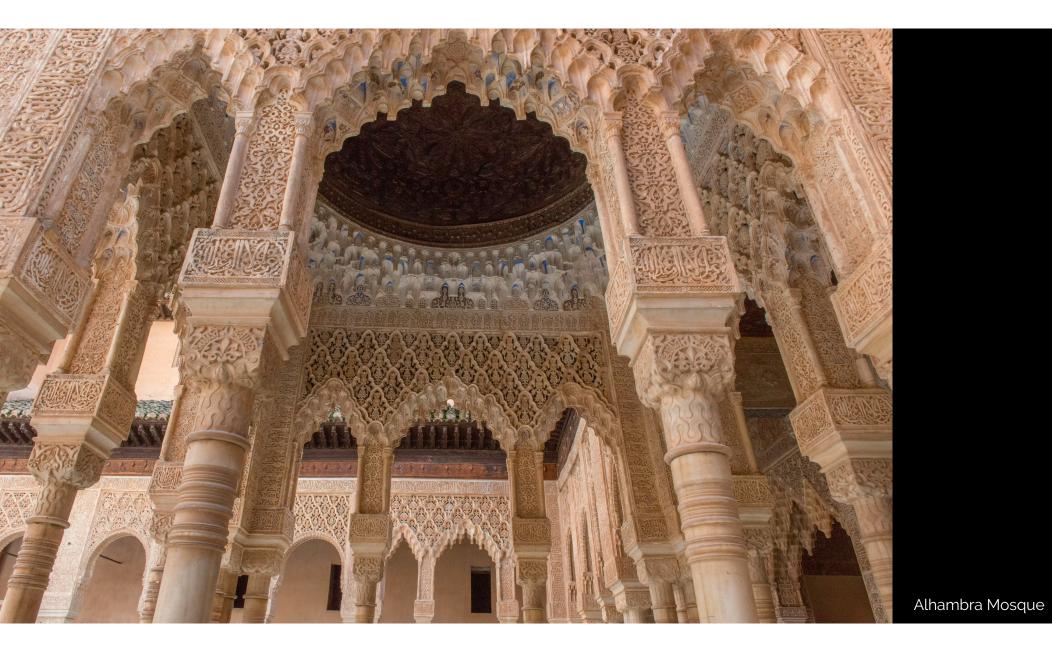

How to create your own tiles using existing tilings as a starting point.

Modify two matching edges or vertices in the same way


https://www.rochester.edu/pr/Review/V79N3/0603 schattschneider side.html

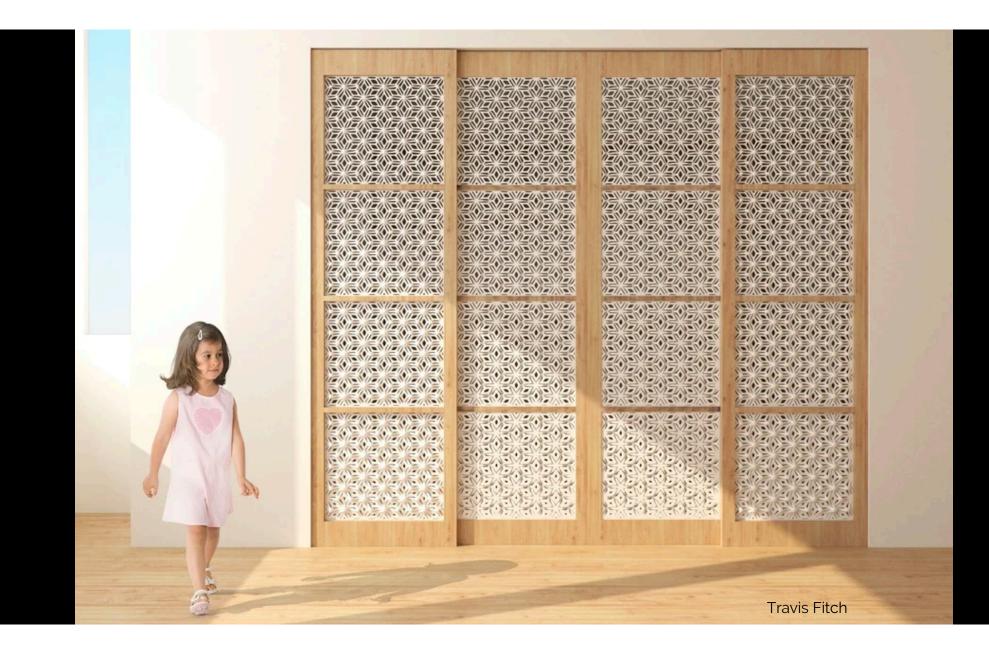
Creating Interesting Tiles

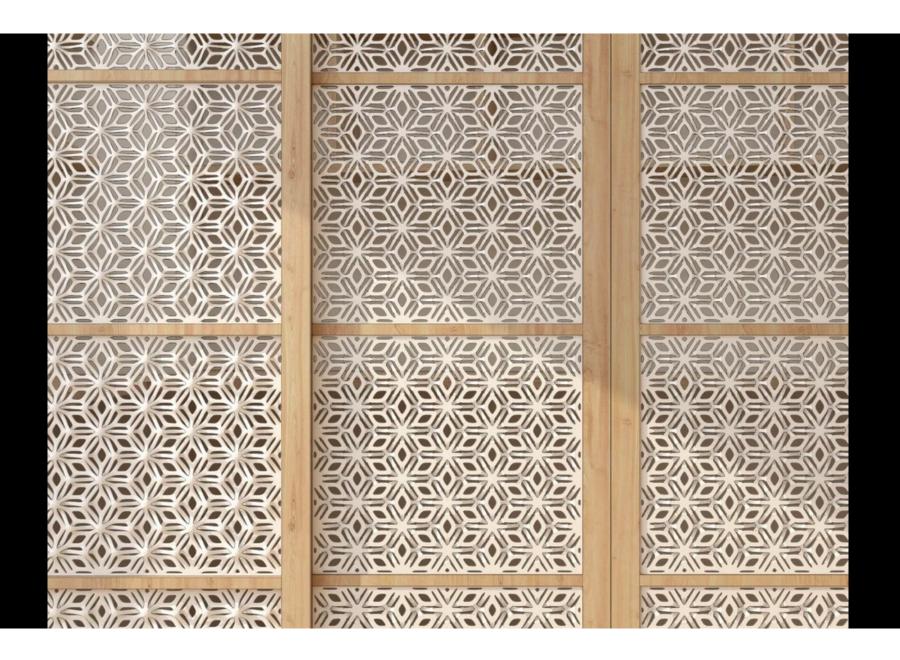



https://tiled.art/en/create/?id=Quad1

2.5 D Tiling/Tessellations

Alhambra Mosque


Alhambra Mosque



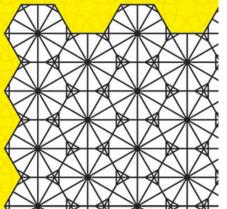
Raffello Galiotto for Lithos Design https://www.lithosdesign.com/

Creating Interesting Tiles

Use one of the foundational tilings as a starting point.

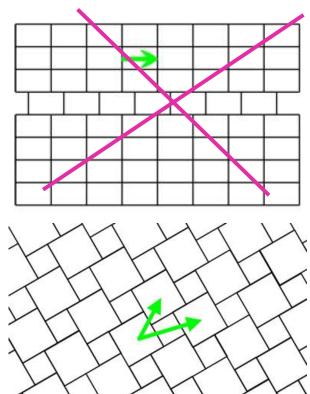

Add complexity (in 2D or 3D). Constraint: maintain edge relationships


Tile through repetition, consider fractalization


Morph across surface

questions?

Categorizations of Tiles


(Periodic) Tile Generation

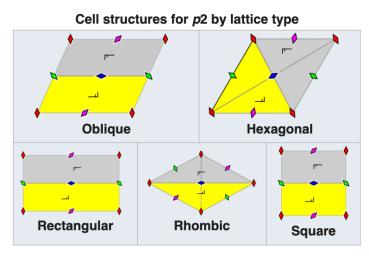
Periodic Tilings

A tiling that you can replicate **by translation** in at least two non-parallel directions.

Think about wallpaper. A tiling you can create a wallpaper from.

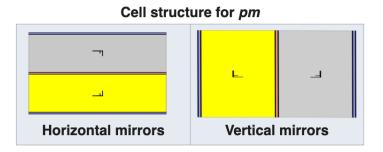
http://pi.math.cornell.edu/~mec/2008-2009/KathrynLindsey/PROJECT/Page4.htm

Periodic Tilings and Wallpaper Groups


- Any periodic tiling can be characterized as a "wallpaper".
- Wallpaper Groups: formal categories that describe the types of symmetries present in a tiling
- Describing symmetry = describing transformations (translation, rotation, reflection). Useful information for constructing tilings.

https://en.wikipedia.org/wiki/Wallpaper_group https://mathworld.wolfram.com/WallpaperGroups.html

17 Wallpaper Groups (2D)


Square [4,4], • ₄ •₄•		Rectangular [∞ _h ,2,∞ _v], ⊷ • ⊷•			Rhombic [∞ _h ,2⁺,∞ _v], • _∞ ₀ ₂ ಂ _∞ •			Hexagonal/Triangular [6,3], _{€6} ⊷ / [3 ^[3]], <्			
IUC (Orb.) Geo	Coxeter	Domain Conway name	IUC (Orb.) Geo	Coxeter	Domain Conway name	IUC (Orb.) Geo	Coxeter	Domain Conway name	IUC (Orb.) Geo	Coxeter	Domain Conway name
p1 (°) p1			p1 (°) p1	[∞+,2,∞+] ∞} }∞	-" Monotropic	p1 (°) p1	[∞+,2+,∞+] ್ಹ⊕ ₂ ⊕ _∞ ○	Monotropic	p1 (°) p1		Monotropic
p2 (2222) p2	[4,1+,4]+ ••*02 [1+,4,4,1+]+ •••	Ditropic	p2 (2222) p2	[∞,2,∞]+ ೦ _ಹ ೦ ₂ ೦ _ಹ ೦	Ditropic	p2 (2222) p2	[∞,2+,∞]+ 28 [∞] 92	Ditropic	p2 (2222) p2	[6,3] [∆]	Ditropic
pgg (22×) p _g 2 _g	• <u>+</u> +++] [4+,4+] ° ₄ ⊕ ₄ ⊙		pg(h) (××) p _g 1	h: [∞+, (2,∞)+] ∞_⊕_2^⊙	Monoglide	cm(h) (*x) c1	h: [∞+,2+,∞] ್ಹ∿շ⊂⊸●	Monorhombic	cmm (2*22) c2	[6,3] ^人	Dirhombic
pmm (*2222)	[4,1 ⁺ ,4] •4•4 [1 ⁺ ,4,4,1 ⁺]	Diglide	pg(v) (××) p _g 1	v: [(∞,2) ⁺ ,∞ ⁺] ° _∞ ° ₂ Φ _∞ °	Monoglide	cm(v) (*x) c1	ν: [∞,2 ⁺ ,∞ ⁺] • _∞ ⁻ 2 ^Φ ∞ ⁻ [((∞,2) ⁺)	Monorhombic	p3 (333) p 3	[1 ⁺ ,6,3 ⁺] • _€ o○ [3 ^[3]] ⁺ ♀∞	Tritropic
p2 cmm	• <u>4</u> • <u>4</u> •	Discopic	pgm (22*) p _g 2	h: [(∞,2) ⁺ ,∞] ಂ _ಹ ್ತಾಂ _{ಹ್} •	Digyro	(22×) p _g 2 _g	[2]] o ²⁰ 20	Diglide	p3m1 (*333)	[1 ⁺ ,6,3] • ₆ •• [3 ^[3]]	
(2*22) c2	•\$ <u>2</u>	Dirhombic	pmg (22*)	v: [∞, (2,∞)+]	L J R P	cmm (2*22) c2	[∞,2 ⁺ ,∞] • <u>⊸</u> 20 <u>⊸</u> •	Dirhombic	p3		Triscopic
p4 (442) p4	[4,4] ⁺ ° ₄ ° ₄ °	Tetratropic	p _g 2 pm(h)	• <u></u> h: [∞+,2,∞]	Digyro	Parallelogrammatic (oblique)		(3*3) h3	[6,3 ⁺] • ₆ ∽∽	Trigyro	
p4g (4*2)	[4+,4]		(**) p1 pm(v)	∞ ••			11 °)	_	р6 (632) р б	[6,3]⁺ ° ₆ °–°	AC NOL TO
p _g 4	° ₄ ° ₄ ∙	Tetragyro	pm(v) (**) p1	v: [∞,2,∞+] • <u>⊸</u> • ○ _∞ ⊙	Monoscopic	p	1 Monotropic		p6m	[0.0]	Hexatropic
p4m (*442) p4	[4,4] •4•4•			pmm [∞,2,∞]		p2 (2222) p2 Ditropic			(*632) p6		Hexascopic
			p2	••	Discopic			Блюріс			

Group p2 (2222) [edit]

- Orbifold signature: 2222
- Coxeter notation (rectangular): [∞,2,∞]⁺
- Lattice: oblique
- Point group: C₂
- The group *p***2** contains four rotation centres of order two (180°), but no reflections or glide reflections.

Group pm (**) [edit]

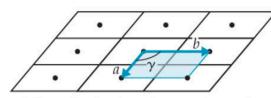
- Orbifold signature: **
- Coxeter notation: [∞,2,∞⁺] or [∞⁺,2,∞]
- Lattice: rectangular
- Point group: D₁
- The group *pm* has no rotations. It has reflection axes, they are all parallel.

17 Wallpaper Groups (2D)

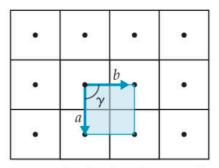
Square [4,4],			Rectangular [∞ _h ,2,∞ _v], ⊷ • ⊷			Rhombic [∞ _h ,2⁺,∞ _v], • _ଇ ତ୍ ₂ ୦ _ଇ ●			Hexagonal/Triangular [6,3], _€ ↔ / [3 ^[3]], <		
IUC (Orb.) Geo	Coxeter	Domain Conway name	IUC (Orb.) Geo	Coxeter	Domain Conway name	IUC (Orb.) Geo	Coxeter	Domain Conway name	IUC (Orb.) Geo	Coxeter	Domain Conway name
p1 (°) p1			p1 (°) p1	[∞+,2,∞+] ∞{ }∞	-" Monotropic	p1 (°) p1	[∞+,2+,∞+] ್ಹ∿ ₂ ∿ಹ್⊙	Monotropic	p1 (°) p1		Monotropic
p2 (2222) p2	[4,1 ⁺ ,4] ⁺ ⁴ ⊙2 [1 ⁺ ,4,4,1 ⁺] ⁺ 	Ditropic	p2 (2222) p2	[∞,2,∞]+ ° _∞ ° ₂ ° _∞ °		p2 (2222) p2	[∞,2+,∞]+ 28 ≞ 82	Ditropic	p2 (2222) p2	[6,3] [∆]	Ditropic
pgg (22×) p _q 2 _q	• <u>4</u> • <u>4</u> • [4+,4+] ° ₄ Φ ₄ ⊙		pg(h) (××) p _g 1	h: [∞+, (2,∞)+] ° _∞ Φ ₂ ¯° _∞ °	Monoglide	cm(h) (*x) c1	h: [∞+,2+,∞] ∞	Monorhombic	cmm (2*22) c2	[6,3] ^Å	Dirhombic
pmm (*2222)	[4,1 ⁺ ,4] •4 [•] 4• [1 ⁺ ,4,4,1 ⁺]	Diglide	pg(v) (××) p _g 1	v: [(∞,2) ⁺ ,∞ ⁺] ° _∞ ° ₂ ⁰ _∞ °	Monoglide	cm(v) (*x) c1	ν: [∞,2 ⁺ ,∞ ⁺] • _∞ ⁻ 2 ^Φ ∞ ⁻ [((∞,2) ⁺)	Monorhombic	p3 (333) p3	[1 ⁺ ,6,3 ⁺] • ₆ ∽∽ [3 ^[3]] ⁺ ∑∞	Tritropic
p2 cmm	•4•4• [(4,4,2+)]	Discopic	pgm (22*) p _g 2	h: [(∞,2) ⁺ ,∞] ∞ <u>~</u> 2∞•	Digyro	(22×) p _g 2 _g	[2]] c ^{2@} 20	Diglide	p3m1 (*333)	[1 ⁺ ,6,3] • ₆ •• [3 ^[3]]	
(2*22) c2	•\$¢2	Dirhombic	pmg (22*)	v: [∞, (2,∞) ⁺]		cmm (2*22) c2	[∞,2 ⁺ ,∞] • <u>≂</u> 2 <u>~</u> —•	A A A	p3	[3 ⁽⁰]]	Triscopic
p4 (442) p4	[4,4] ⁺ ° ₄ ° ₄ °	L === == 1	p _g 2 pm(h)	• <u>∞</u> 2 <u>∞</u>	Digyro	62	Parallelogr		p31m (3*3) h3	[6,3 ⁺] • ₆ °-∽	Trigyro
p4g (4*2)	[4+,4]	Tetratropic		∞ ⊷	 Monoscopic	(oblique)		ue)	р6 (632) рб	[6,3]+ ° ₆ °-0	12 - 702 × 70
p _g 4	°₄°₄•	Tetragyro	pm(v) (**) v: [∞,2,∞*] □ □ □			p1 Monotropic			p6 p6m		Hexatropic
p4m (*442) p4	[4,4] ●₄●₄●	Tetrascopic	p1 pmm (*2222)	[∞,2,∞] • ⊡• • ⊡•	Monoscopic	(22	222) 222)	Ditropic	(*632) p6	[6,3] • ₆ •••	Hexascopic

Bravais Lattices

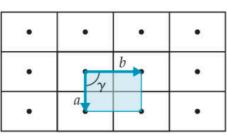
- Mathematical definition: an infinite arrangement of points in space such that the lattice looks exactly the same when viewed from any lattice point.
- In 3D, Bravais Lattices define the 14 different configurations into which atoms can be arranged in crystals.


14 3D Bravais Lattice Structures

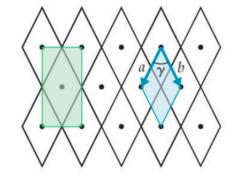
Crystal Family	Lattice System	Schönflies	14 Bravais Lattices							
Crystar Failing	Latitude System	Schonnes	Primitive (P)	Base-centered (C)	Body-centered (I)	Face-centered (F)				
Tric	Triclinic		$ \begin{array}{c} \gamma \\ \beta \\ \alpha \\ b \end{array} $							
Monoclinic		C _{2h}	$\beta \neq 90^{\circ}$ $a \neq c$ $a \neq c$ b	$\beta \neq 90^{\circ}$ $a \neq c$ $a \neq c$ b						
Orthorhombic		D _{2h}	$a \neq b \neq c$	$a \neq b \neq c$	$a \neq b \neq c$	$a \neq b \neq c$				
Tetra	Tetragonal				$a \neq c$					
	Rhombohedral	D _{3d}	$ \begin{array}{c} \alpha \neq 90^{\circ} \\ a \\ a \\ a \\ a \end{array} $							
Hexagonal	Hexagonal	D _{6h}								
Cubic		O _h			a a a					


17 Wallpaper Groups (2D)

Square [4,4], • ₄ • ₄ •		Rectangular [∞ _h ,2,∞ _v], ⊷ •⊸•			$\begin{array}{c} \textbf{Rhombic} \\ [\mathbf{\tilde{w}}_{h}, 2^{+}, \mathbf{\tilde{w}}_{v}], \mathbf{\tilde{w}}_{v}^{-} \mathbf{\tilde{z}}_{v}^{-} \mathbf{\tilde{w}} \end{array}$			Hexagonal/Triangular [6,3], $\cdot_{6} \leftrightarrow / [3^{[3]}], \checkmark_{6}$			
IUC (Orb.) Geo	Coxeter	Domain Conway name	IUC (Orb.) Geo	Coxeter	Domain Conway name	IUC (Orb.) Geo	Coxeter	Domain Conway name	IUC (Orb.) Geo	Coxeter	Domain Conway name
р1 (°) р1			р1 (°) р1	[∞+,2,∞+] ∞0 0∞		p1 (°) p1	[∞+,2+,∞+] ್ಹ0_20_∞	Monotropic	p1 (°) p1		Monotropic
p2 (2222) p2	[4,1 ⁺ ,4] ⁺ ••€02 [1 ⁺ ,4,4,1 ⁺] ⁺	Ditropic	p2 (2222) p2	[∞,2,∞] ⁺ ಂ _ಹ ಂ ₂ ಂಹಂ	Ditropic	p2 (2222) p2	[∞,2 ⁺ ,∞] ⁺ 20 [∞] / _∞ 02	Ditropic	p2 (2222) p2	[6,3] [∆]	Ditropic
pgg (22×) p _g 2 _g	• <u>4</u> • <u>4</u> • [4+,4+] ° ₄ Φ ₄ °		pg(h) (××) p _g 1	h: [∞+, (2,∞)+] ್ಹ∿շ್⊸ಂ	Monoglide	cm(h) (*x) c1	h: [∞+,2+,∞] ° _∞ Φ ₂ ° _∞ ●	Monorhombic	cmm (2*22) c2	[6,3] ^人	Dirhombic
pmm (*2222)	[4,1 ⁺ ,4] •4•4• [1 ⁺ ,4,4,1 ⁺]	Diglide	pg(v) (××) p _g 1	v: [(∞,2) ⁺ ,∞ ⁺] ್ಹಂ ₂ ⊕ _ಹ ⊙	Monoglide	cm(v) (*x) c1 pgg	v: [∞,2 ⁺ ,∞ ⁺] • <u>∞</u> ⁰ <u>2</u> ⁰ <u>∞</u> ⁰ [((∞,2) ⁺)	Monorhombic	рЗ (333) р 3	[1 ⁺ ,6,3 ⁺] • ₆ ◦-∞ [3 ^[3]] ⁺ ∁∞	Tritropic
p2 cmm (2*22)	•4•4• [(4,4,2+)]	Discopic	pgm (22*) p _g 2	h: [(∞,2) ⁺ ,∞] ್ <u>⊸</u> ್_ত_•	Digyro	(22×) p _g 2 _g	[((, -/ / [2]] o ^{2@} 20	Diglide	p3m1 (*333)	[1 ⁺ ,6,3] • ₆ •• [3 ^[3]]	
(2 22) c2 p4	•\$2	Dirhombic	pmg (22*) p _g 2	v: [∞, (2,∞)+] • <u>∞</u> 0		cmm (2*22) c2	[∞,2 ⁺ ,∞] • _∞ _2 ⁻ ∞•	Dirhombic	p3 p31m	[6,3 ⁺]	Triscopic
(442) p4	[4,4] ⁺ ° ₄ ° ₄ °	Tetratropic	pm(h) (**)	- h: [∞+,2,∞]	Digyro	(Parallelogr (oblig		(3*3) h3	•60-0	Trigyro
p4g (4*2) p _g 4	[4+,4] ° ₄ °₄•		p1 pm(v)	o _∞ o •∞• v: [∞,2,∞+]	Monoscopic	(01 °) 01	-	р6 (632) р б	[6,3]⁺ ° ₆ °−°	Hexatropic
p4m (*442)	[4,4]	Tetragyro	(**) p1 pmm	•• •	Monoscopic	p	02 (222)	lonotropic	p6m (*632) p6	[6,3] • ₆ •••	Harman
p4	•4•4•	•4•4• Tetrascopic		[∞,2,∞] • <u>∞</u> • • <u>∞</u> •	Discopic		ē	Ditropic	P .		Hexascopic

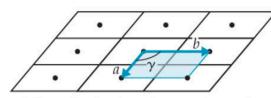

5 2D Bravais Lattice Structures

Oblique lattice ($a \neq b, \gamma = arbitrary$)

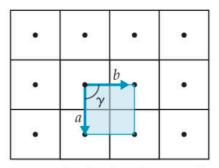

Square lattice ($a = b, \gamma = 90^{\circ}$)

Rectangular lattice ($a \neq b$, $\gamma = 90^{\circ}$)

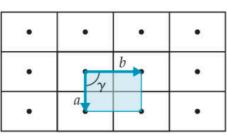
Hexagonal lattice ($a = b, \gamma = 120^{\circ}$)



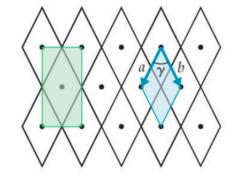
Rhombic lattice ($a = b, \gamma = arbitrary$) Centered rectangular lattice


Bravais Lattice Structures

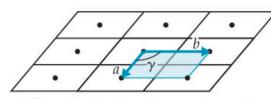
Any periodic 2D tiling maps to one of these 5 fundamental lattice structures.


5 2D Bravais Lattice Structures

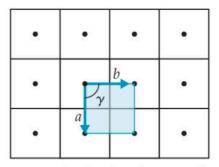
Oblique lattice ($a \neq b, \gamma = arbitrary$)


Square lattice ($a = b, \gamma = 90^{\circ}$)

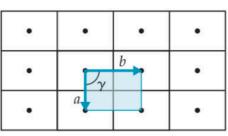
Rectangular lattice ($a \neq b$, $\gamma = 90^{\circ}$)



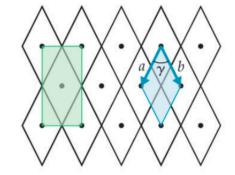
Hexagonal lattice ($a = b, \gamma = 120^{\circ}$)



Rhombic lattice ($a = b, \gamma = arbitrary$) Centered rectangular lattice


Note that they're all related

Oblique lattice ($a \neq b, \gamma = arbitrary$)


Square lattice ($a = b, \gamma = 90^{\circ}$)

Rectangular lattice ($a \neq b$, $\gamma = 90^{\circ}$)

Hexagonal lattice ($a = b, \gamma = 120^{\circ}$)

Rhombic lattice ($a = b, \gamma = arbitrary$) Centered rectangular lattice

Thank you!

CS 491 and 591 Professor: Leah Buechley https://handandmachine.cs.unm.edu/classes/Computational_Fabrication_Spring2021/