Computational Fabrication

CS 491 and 591 Professor: Leah Buechley https://handandmachine.cs.unm.edu/classes/Computational_Fabrication

Weekly Researcher: Lining Yao

https://morphingmatter.org/

Calendar check in: Data Physicalization Assignment GCODE Assignment Final Project Proposal Assignment Hand and Machine Turtle Library for Generating GCODE

Extruder Turtle Library

Turtle generates a 3D printed path as it moves by generating g-code

https://handandmachine.org/projects/extruder_turtle_rhino/

Functionality: Movement

- **t.forward**(distance) moves the turtle forward by a given distance, extruding along the way if the pen is down.
- **t.left**(theta) turns the turtle left by a given angle. This is an alias for t.yaw(theta).
- t.right(theta) turns the turtle right by a given angle. This is an alias for t.yaw(-theta).
- t.pitch_up(theta) tilts the turtle "upwards" in the direction its eyes would point. Alias for t.pitch(theta).
- **t.pitch_down**(theta) tilts the turtle "downwards". Alias for t.pitch(-theta).
- t.roll_left(theta) rolls the turtle towards its left side. Alias for t.roll(-theta).
- t.roll_right(theta) rolls the turtle towards its right side. Alias for t.roll(theta).
- t.lift(height) lifts the turtle up by a given height. Usually used to move from one layer of a print to the next.
- **t.penup**() lifts the pen up. No extrusion will occur until it is put down again.
- **t.pendown**() puts the pen down. Extrusion will occur at a constant rate with each movement unless the pen is lifted up.

https://handandmachine.org/projects/extruder_turtle_rhino/

Functionality: Setup

- The constructor **t** = **ExtruderTurtle()** takes no arguments and creates a new turtle
- t.set_extrude_rate(extrude_rate) sets the density of extrusion, or the rate at which filament is extruded, measured in millimeters of filament per millimeters of movement.
- **t.set_speed**(speed) sets the "feedrate" or speed of the extruder.
- **t.setup()** writes the sequence of initialization commands to the g-code file (which moves the nozzle to its starting position, heats the bed and extruder, and so on). Optional arguments allow you to customize the setup process:
 - x=0 is the starting x-value
 - y=0 is the starting y-value
 - feedrate=1000 is the starting feedrate/speed
 - hotend_temp=215 is the default hotend temperature
 - bed_temp=60 is the default bed temperature
- **t.finish**() carries out the finalization sequence (moves the extruder upwards, cools the bed and extruder, etc).

Functionality: GH/Rhino

- t.draw_turtle() generates a triangular surface that shows you the position and orientation of the Turtle in 3D space
- t.get_lines() generates a list of lines that allow you to visualize the path of the turtle in Rhino

GCode file structure

Header (supplied by library): home extruder heat up bed and nozzle extrude lines along edge

Main code (generated by turtle movement): move extruder to start point build shape with G1 commands E commands determine amount of filament extruded

Footer (supplied by library): return home turn off heaters and fans

questions?

Using the Library

Download or clone the library: https://github.com/Hand-and-Machine/extruder-turtle-Rhino

Save it with your other class material. Make a note of the location

Add the folder where you saved the file to your Rhino path. We'll go through these steps.

Download again and/or fetch to get most recent version

Add folder to Rhino path

In Rhino: Go to Tools menu. Select Script—> Edit

Then, go to (new) **Tools** menu Select **Options**

Tools	Analyze	Render	Window
Object Snap		>	
Commands		>	ac Solid
Script		>	Run
Grassho	opper		Edit

Tools	Window	Help	
Open Command Prompt 쇼 ૠ		ሪ	
Open File Prompt		жР	
Options			ж,

Add folder to Rhino path C# 9 Python 3

In the Options window: Click on the **Python 3** tab

At the bottom of the window, add the **extruder_turtle** folder to **Module Search Paths**. Note, this folder is inside the top level extruder-turtle-Rhino folder.

Click **OK**

Show White Spaces	Default
Use Tab Indents 😲	Default
Show Indentation Guides	Default
Show Minimap	Default
Language Support Options	
Diagnostics (Linting)	Default
Autocomplete	Default
Word-based Autocomplete 😲	Default
Autocomplete in Function Help 😲	Default
Module Search Paths	王
/Users/Leah/Documents/GitHub/extruder-turtle-R	hino/extruder_turtle
/Users/Leah/Documents/GitHub/jaime_slicer /Users/Leah/Documents/GitHub/weaveSlicerPy	
Restore Defaults	ОК

IronPython 2

Quit and Restart Rhino

Open Grasshopper

Open an example program

basic_turtle_examples Untitled.gcode examples extruder turtle > LICENSE Navigate to the April README.md 🔚 reload_library.gh examples—>basic_examples starting_example.gh folder in the extruder-turtle-Rhino folder you downloaded March 🛴 turtle_shapes.gh Open starting_example.gh

Check to make sure it runs and you don't get library errors. If it doesn't run, something went wrong with installation. Go through the steps again.

starting_example.gh

This is a simple program that demonstrates how to get started with the Extruder Turtle Library It generates a gcode file that follows the path of the turtle. More information: https://handandmachine.org/projects/extruder_turtle_rhino/examples.html

This is a simple program that demonstrates how to get started with the Extruder Turtle Library It generates a gcode file that follows the path of the turtle. More information: https://handandmachine.org/projects/extruder_turtle_rhino/examples.html


```
import rhinoscriptsyntax as rs
import extruder_turtle
from extruder_turtle import *
```

```
# set up the turtle and associate the
# turtle with a specific printer
t = ExtruderTurtle()
t.setup(filename=file, printer = "ender")
```

```
# print out important printer parameters
t.print_printer_information()
```

```
# do your turtle programming here
# this code draws a square prism
for j in range (10):
    for i in range (4):
        t.forward(50) # units are in mm
        t.right(90)
    t.lift(t.get_layer_height())
```

Code, top

```
# visualize the turtle's location
# and position
turtle = t.draw_turtle()
```

```
# visualize the printer's print bed
print_bed = t.draw_print_bed()
```

```
# get the path the turtle has
# traveled to visualize in Rhino
lines = t.get_lines()
```

```
# get the approximate print time
t.get_print_time()
```

```
# close the generated .gcode file
t.finish()
```

Code, bottom

Run and look at .gcode file

G1 F1000 ********** End printer initialization *********** Nozzle size: 0.2 : Extrude width: 0.4 ; Layer height: 0.2 : Extrude rate: 0.05 ; Speed: 1000 : Mix Factor: 0.9 G1 X50.0 Y0.0 E2.5 G1 X0.0 Y-50.0 E2.5 G1 X-50.0 Y-0.0 E2.5 G1 X-0.0 Y50.0 E2.5 ; new layer G1 Z0.2 G1 X50.0 Y0.0 E2.5 G1 X0.0 Y-50.0 E2.5 G1 X-50.0 Y-0.0 E2.5 G1 X-0.0 Y50.0 E2.5 ; new layer

Look at:

Header code Note: library uses relative coordinates

Move and extrude commands

Layers

Open .gcode file in Cura

Look at library documentation

Extruder Turtle Library

Reference

This page provides detailed documentation on the functions available in the Extruder Turtle Library. Jump to a section:

Setup

Turtle Related Functions Euclidean Geometry Functions 3D Printer and G-Code Related Functions Rhino/Grasshopper Visualization Functions Material Related Functions

Setup		
ExtruderTurtle	Constructor. Generates a turtle object.	
	Parameters: N/A	
	Returns: A turtle object located at the origin.	
	<pre>Example: t = ExtruderTurtle()</pre>	
setup	Sets initial parameters for the turtle. A printer must be set either through this function or the set_printer function for the printer-based functions to work. A filename must be specified via this function for g-code generation to work.	
	The library currently supports the following printers:	
	Eazao Zero, "eazao" 3D Potter Super 10, "super"	

https://handandmachine.org/projects/ extruder_turtle_rhino/reference.html

Edit your code to make polygon prisms

new inputs: sides: number of sides size: size of sides height: height of prism

Open G-Code file in Cura

Printer settings and the library code

Open reload_library.gh

- Navigate to the
 examples—>basic_examples
 folder in the extruder-turtle-Rhino
 folder you downloaded
- Open reload_library.gh

Open reload_library.gh

code required so that library reloads
use if you want to make edits to library
and have the changes compiled here
must be above other import statements
import sys
import operator as op
to_delete = list()
for module in sys.modules:
 if "extruder_turtle" in module:
 to_delete.append(module)
for module in to_delete:
 sys.modules.pop(module)

begin standard import statements
import rhinoscriptsyntax as rs
import extruder_turtle
from extruder_turtle import *

deletes previous library import and reloads each time this block compiles

Note: this basic framework allows you to use external python files in GH programs

Look at library python files

Open ExtruderTurtle.py

- Navigate to the extruder_turtle folder in the extruder-turtle-Rhino folder you downloaded
- Open **ExtruderTurtle.py** in a text editor of your choice

Open ExtruderTurtle.py

```
import os
import math
import copy
import rhinoscriptsyntax as rs
__location__ = os.path.dirname(__file__)
class ExtruderTurtle:
    def init (self):
        self.x = 0
        self.y = 0
        self_z = 0
        self.forward_vec = [1, 0, 0]
        self.left_vec = [0, 1, 0]
        self.up_vec = [0, 0, 1]
        self.use_degrees = True
        self.pen = True
        self.mix factor = 0.9
        # GCODE writing and history tracking
        self.write_gcode = False
        self.track_history = True
        self.prev_points = [(self.x,self.y,self.z)]
        self.line seqs = []
        self.extrusion_history = []
```

set_printer function

```
# set printer parameters
def set printer(self,printer):
    if (printer=="Ender" or printer=="ender" or printer=="creatlity" ):
        if(self.out file):
            self.initseq_filename = os.path.join(__location__, "data/initseqEnder.gcode")
        self.nozzle = 0.2
        self.extrude_width = 0.4
        self.layer_height = .2
        self.extrude_rate = 0.05 #mm extruded/mm
        self.speed = 1000 #mm/minute
        self.printer = "ender"
        self.resolution = .1
        self.x size = 220
        self.y size = 220
    elif (printer=="super" or printer=="3Dpotter" or printer=="3D Potter" or printer=="3d pot
        if(self.out file):
            self.initseq_filename = os.path.join(__location__, "data/initseq3DPotter.gcode")
        self.nozzle = 3.0
        self.extrude_width = 3.4 #mostly for solid bottoms
        self.layer_height = 2.2
        self.extrude_rate = 3.0 #mm extruded/mm
        self.speed = 1000 #mm/minute = 16.6 mm/second
        self.printer = "super"
```

edit to add/represent your printer

```
# set printer parameters
def set_printer(self,printer):
    if (printer=="Ender" or printer=="ender" or printer=="creatlity" ):
        if(self.out file):
            self.initseq_filename = os.path.join(__location__, "data/initseqEnder.gcode")
        self.nozzle = 0.2
        self.extrude_width = 0.4
        self.layer_height = .2
        self.extrude_rate = 0.05 #mm extruded/mm
        self.speed = 1000 #mm/minute
        self.printer = "ender"
        self.resolution = .1
        self.x size = 220
        self.y size = 220
    elif (printer=="super" or printer=="3Dpotter" or printer=="3D Potter" or printer=="3d pot
        if(self.out file):
            self.initseq_filename = os.path.join(__location__, "data/initseq3DPotter.gcode")
        self.nozzle = 3.0
        self.extrude_width = 3.4 #mostly for solid bottoms
        self.layer_height = 2.2
        self.extrude_rate = 3.0 #mm extruded/mm
        self.speed = 1000 #mm/minute = 16.6 mm/second
        self.printer = "super"
```

edit to add/represent your printer

```
# set printer parameters
def set printer(self,printer):
    if (printer=="Ender" or printer=="ender" or printer=="creatlity"):
                                                                          name
        if(self.out file):
            self.initseq_filename = os.path.join(__location__, "data/initseqEnder.gcode")
        self.nozzle = 0.2
        self.extrude_width = 0.4
        self.layer_height = .2
        self.extrude_rate = 0.05 #mm extruded/mm
        self.speed = 1000 #mm/minute
        self.printer = "ender"
        self.resolution = .1
        self.x size = 220
                              bed size
        self.y size = 220
    elif (printer=="super" or printer=="3Dpotter" or printer=="3D Potter" or printer=="3d pot
        if(self.out file):
            self.initseq_filename = os.path.join(__location__, "data/initseq3DPotter.gcode")
        self.nozzle = 3.0
        self.extrude_width = 3.4 #mostly for solid bottoms
        self.layer_height = 2.2
        self.extrude_rate = 3.0 #mm extruded/mm
        self.speed = 1000 #mm/minute = 16.6 mm/second
        self.printer = "super"
```

questions?

Turtle Geometry & Euclidean Geometry are friends

Open a new example program

- Navigate to the
 examples—>basic_examples
 folder in the extruder-turtle-Rhino
 folder you downloaded
- Open euclidean_geometry.gh

euclidean_geometry.gh

```
for i in range (0,361):
    # euclidean geometry: circle
    x = radius * math.cos(math.radians(i))
    y = radius * math.sin(math.radians(i))
    # set the turtle's position using coordinates
    t.set_position(x,y)
    if (i>0 and i%10 == 0):
        # turtle geometry: spikes
        t.right(90)
        t.forward(5)
        t.back(5)
        t.left(90)
```


Look at library documentation

Extruder Turtle Library

Reference

This page provides detailed documentation on the functions available in the Extruder Turtle Library. Jump to a section:

Setup

Turtle Related Functions Euclidean Geometry Functions 3D Printer and G-Code Related Functions Rhino/Grasshopper Visualization Functions Material Related Functions

Setup		
ExtruderTurtle	Constructor. Generates a turtle object.	
	Parameters: N/A	
	Returns: A turtle object located at the origin.	
	<pre>Example: t = ExtruderTurtle()</pre>	
setup	Sets initial parameters for the turtle. A printer must be set either through this function or the set_printer function for the printer-based functions to work. A filename must be specified via this function for g-code generation to work.	
	The library currently supports the following printers:	
	Eazao Zero, "eazao" 3D Potter Super 10, "super"	

https://handandmachine.org/projects/ extruder_turtle_rhino/reference.html

Large Assignment 4: GCODE

Due Dates

Assignment : End of day, Tuesday October 22 Presentation: Thursday October 24 Initial comments: End of day, Thursday October 24 Comment responses: End of day, Friday October 25

Option: use clay 3D printer

Thank you!

CS 491 and 591 Professor: Leah Buechley https://handandmachine.cs.unm.edu/classes/Computational_Fabrication