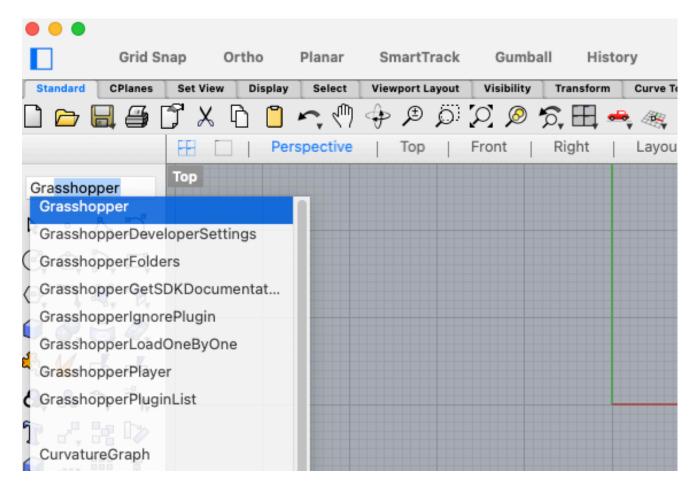
Computational Fabrication

CS 491 and 591 Professor: Leah Buechley https://handandmachine.org/classes/computational_fabrication/

Large Assignment 2 due Tuesday

Due midnight Tuesday 9/24

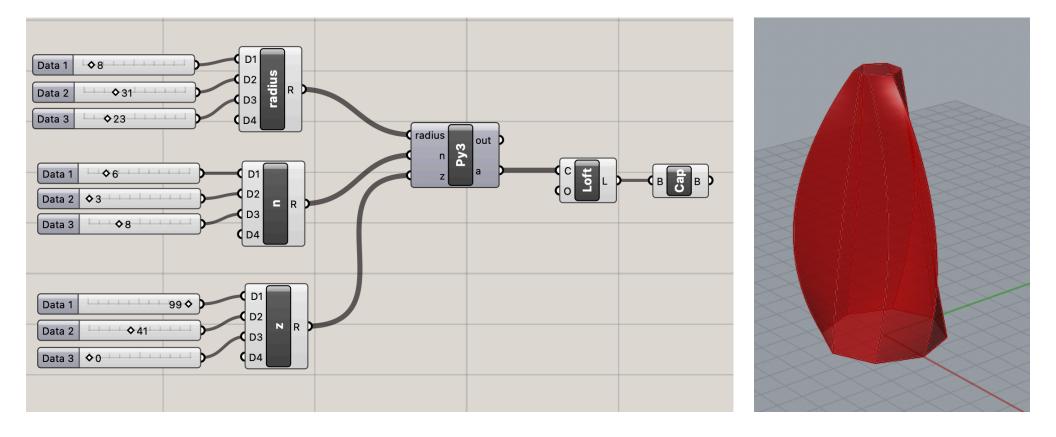
Three parametric 3D printed vessels


Comments and responses

Rhino, Grasshopper, and Python cont.

open up Rhino

Open Grasshopper



Set up so you can see both applications

	Gi	rasshopper - No documer	nt	Untitled — Edited
Params Maths Sets Vi			Display Pufferfish PanelingTools Ka	Ingaroo2 Grid Snap Ortho Planar SmartTrack Gumball History 🖓 🕞 🔘 🗖 Default
0000] 🚱 🛛 🛈 📃	. 🛯 🛃 🔜 ঝ	ا الله الله الله الله الله الله الله	Standard CPlanes Set View Display Select Viewport Layout Visibility Transform Curve Tools Surface Tools Solid Tools SubD Tools Mesh Tools Re
00000	> 4 7 4 🔊			🖑 💠 鸟 🏹 🛱 🧶 🅱 凡 🔋 🛢 📗 🛋 🚔 ല 🥔 🎜 🔞 💂 A 😳 🔗 🧎 🕸 💱 🏶 🌞 🛪 🛪 🛩
Geometry	+ Primitive +	Input +	Util +	₩ ¥
124%				
				Command
Either drag a new compone double click the canvas to a	create a new component			
or open an existing docume	ent via the menu or the tiles.			
				🧟 🖏 🚧 🕂 击
				່ 🗛 👶 🥆 📬 🏗
				у
				x
				• Persistent
				One shot Perspective
				Near
				Point Midpoint
				Perpendicular Tangent
_				Quadrant Knot
	> month	> month	> month	Vertex
	IllustratorImport	Duplicatemoves	sineTwist	On curve
				On polysurface
		> month	> month	
	sine	surfaceWithPattern	mod_lace_example	

Open up the program from last class

Program from last class

To create a vessel, we will:

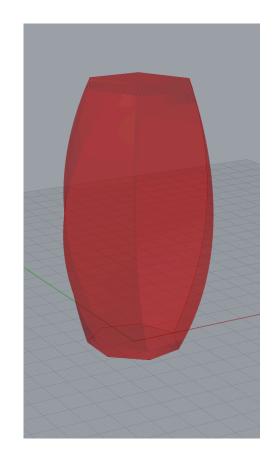
- •Create a solid in Python that will define the outside of the vessel. Commands: <u>AddLoftSrf</u>, <u>CapPlanarHoles</u>
- •Create a new solid that is offset a distance **d** from the current solid. This will define the inside of the vessel. New command: <u>OffsetCurve</u>
- •Subtract the inside shape from the outside shape to create a vessel with walls of thickness **d**. Command: <u>BooleanDifference</u>
- Create a bottom. New commands: <u>AddPlanarSrf</u>, <u>ExtrudeSurface</u>
- •Add the bottom to the walls to create a vessel with walls and a bottom. We'll do this in Grasshopper using the <u>Solid Union</u> block.

Delete Loft and Cap Grasshopper blocks

Create a solid that defines the outside of vessel

Curves as Input

- •Create a new python block, name one of its inputs "curves"
- •Select List access. We will work with a list of curves.
- •Type hint should be Curve
- •Connect the curves output from our first block to this new block


Name (for humans, optional): Tooltip (optional): Bake			
🥑 Bake			
Wire Display	>		
Disconnect	>		
🔶 Principal			
Reverse		rad	lius
🚽 Flatten			n
🚹 Graft			z
🛐 Simplify			
Set Data Item			
Set Multiple Data Items			
Manage Generic Data collection			
Clear values			
Internalise data			
Extract parameter			
Item Access			
XX List Access			
🔀 Tree Access			
Type Hints	>		

Create a solid that defines the outside of vessel

- •Use <u>AddLoftSrf</u> to create a surface through the input curves.
- •Use <u>CapPlanarHoles</u> to create a solid. Note: operates on input geometry. Doesn't generate a new object.

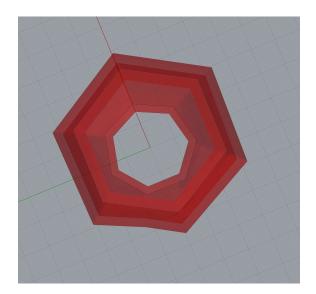
```
import rhinoscriptsyntax as rs
import math
```

```
vase_outer = rs.AddLoftSrf(curves)
rs.CapPlanarHoles(vase_outer)
a = vase_outer
```


Create a solid that defines the inside of vessel

•Use <u>OffsetCurve</u> to create a set of curves that are offset a distance **thickness** from the original curves. Note: this function returns a list.

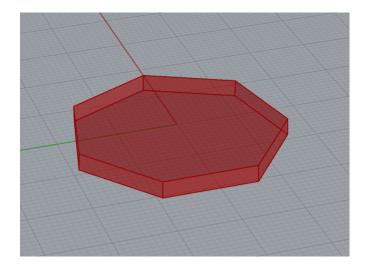
•Add a thickness input to your Python block. Good range: -5.0 to 5.0.


•Generate a solid using these offset curves.

```
offset_curves = []
point = rs.CreatePoint(0,0,0)
for i in range (0,len(curves)):
    offset_curve = rs.OffsetCurve(curves[i],point,thickness)
    offset_curves.append(offset_curve[0])
```

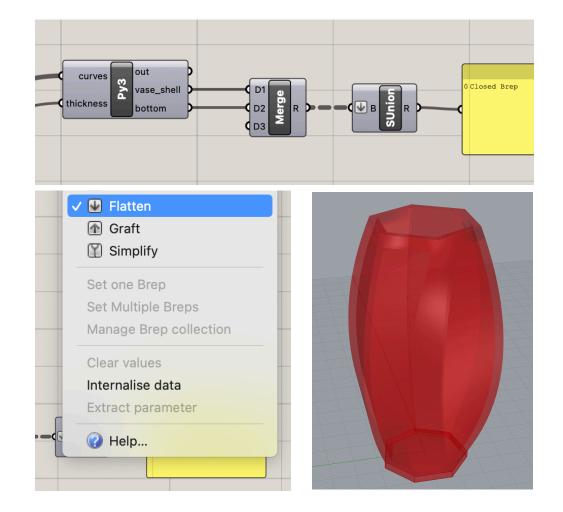
```
vase_inner = rs.AddLoftSrf(offset_curves)
rs.CapPlanarHoles(vase_inner)
```

Create the vessel walls

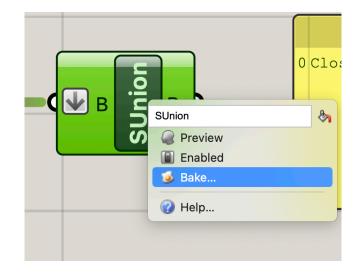

•Use <u>BooleanDifference</u> to create a vessel shell. Note: generates a new object and deletes the two input objects.

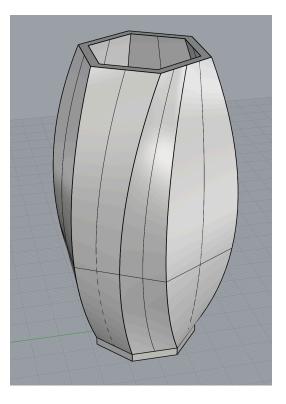
vase_shell = rs.BooleanDifference(vase_outer, vase_inner)

Create the bottom


- •Use <u>AddPlanarSrf</u> to create a surface defined by the bottom most curve in the list. Note: takes a list as input.
- •Use <u>ExtrudeSurface</u> to create a bottom.


```
bottom_curve = curves[len(curves)-1]
bottom_surface = rs.AddPlanarSrf([bottom_curve])
curve=rs.AddLine(rs.CreatePoint(0,0,0),rs.CreatePoint(0,0,-thickness))
bottom = rs.ExtrudeSurface(bottom_surface,curve)
a = bottom
```


Join the sides and bottom together in GH


- •Rename the **a** output from your Python block to your vessel wall variable.
- •Add a second output for your bottom.
- •Add a merge block to create a list of the two outputs.
- •Use a <u>Solid Union</u> block to join the two solids together. The final result should be a Closed Prep. Note: Flatten the input to this block. Right click & select Flatten.

Bake your shape to create a Rhino object

- •Double check the size of your vessel.
- •Units are mm.
- •Right click on the Solid Union block and click Bake...

Rendering in Rhino

•To generate a nice image of your part, select Rendered from the View menu in Rhino.

Export as .stl

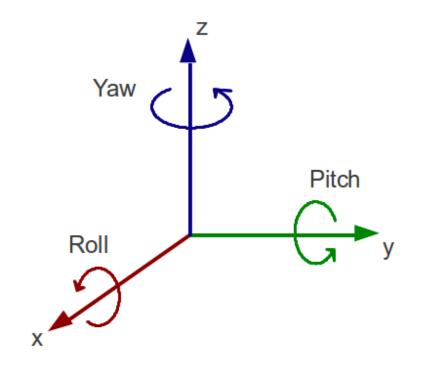
 If you haven't already, doublecheck the size of the object being generated in Python & GH. Units: mm

- •Select your object. Under the File menu, select Export Selected.
- •Select .stl as the file type
- •In the Mesh Export Options box, select a tolerance of .01mm or lower.

	STL Mesh Export Options
Tolerance - The maxim	Im distance between the original surface or solid and the polygon mesh created for the STL file.
0.01	millimeters Preview
?	Cancel Apply Detailed Controls

Transformations

Now we'll experiment with transforming curves before lofting them.


We'll use transformation tools from the Rhino Geometry library:

https://developer.rhino3d.com/api/rhinocommon/rhino.geometry

Rhino Geometry library is separate and different from Rhinoscript library

We'll twist/rotate our curves around the Z-axis

Rotation in 3D

RotationZYX method

Class: Rhino.Geometry.Transform

Description:

Create rotation transformation From Tait-Byran angles (also loosely known as Euler angles).

Syntax:

```
static Transform RotationZYX(
   Double yaw,
   Double pitch,
   Double roll
)
```

Parameters:

yaw

Type: System.Double Angle, in radians, to rotate about the Z axis.

pitch

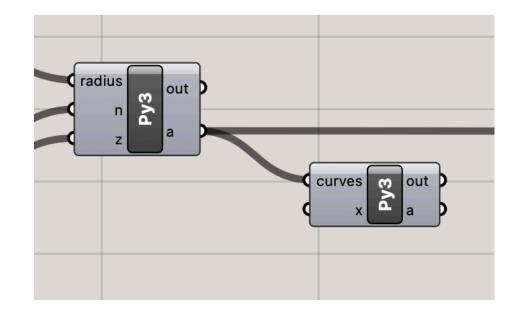
Type: System.Double Angle, in radians, to rotate about the Y axis.

roll

Type: System.Double Angle, in radians, to rotate about the X axis.

Returns:

Type: Transform A transform matrix from Tait-Byran angles.

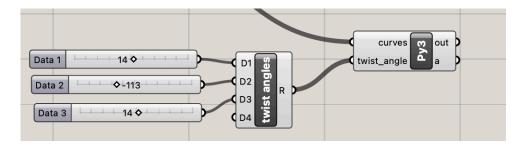

Remarks:

RotationZYX(yaw, pitch, roll) = R_z(yaw) * R_y(pitch) * R_x(roll) where R_*(angle) is rotation of angle radians about the corresponding world coordinate axis.

https://developer.rhino3d.com/api/rhinocommon/rhino.geometry.transform/rotationzyx

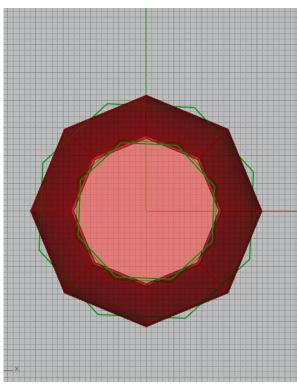
Add a new Python block

- This will also take the curves output from the first block as input.
- Like you did for the last Python block, rename the input variable, select List access and choose Curve for the type.


Write a twist function

```
import rhinoscriptsyntax as rs
import Rhino.Geometry as geom
import math
```

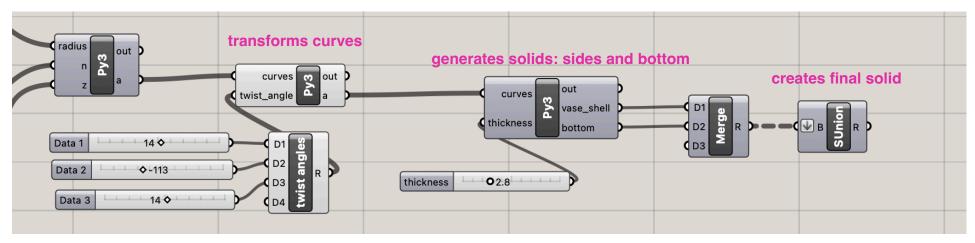
```
def twist(curve, angle):
    twist = geom.Transform.RotationZYX(math.radians(angle),0,0)
    curve.Transform(twist)
```


Apply the twist function to our polygons

- Add a new variable for twist angle.
- Create and merge 3 input sliders for twist. Good range: -360 - 360
- Apply the twist function to your input curves. Note: transformations act on the input geometry.

for i in range (len(curves)):
 twist(curves[i],twist_angle[i])

green shows rotated polygons



Transformations, process

- Create a transformation using geom.Transform.RotationZYX() or other method. This returns a transformation matrix.
- Apply the returned matrix to your geometry. ie: curve.Transform(your_transformation)
- You can define your own transformation matrices and use them in the same way. See: <u>https://developer.rhino3d.com/api/</u> <u>rhinocommon/rhino.geometry.matrix</u>
- More info: <u>https://developer.rhino3d.com/api/rhinocommon/</u> <u>rhino.geometry.transform</u>

Use transformed curves as input to vase generator

produces curves

Play with twists and other transformations

Thank you!

CS 491 and 591 Professor: Leah Buechley https://handandmachine.org/classes/computational_fabrication/