Computational Fabrication

CS 491 and 591 Professor: Leah Buechley https://handandmachine.org/classes/computational_fabrication/

Large Assignment 2 Posted

Due Tuesday 9/26 (one week from today)

Three parametric 3D printed vessels

Comments and responses

Weekly Designer: Neri Oxman

https://oxman.com/projects

https://www.media.mit.edu/groups/mediated-matter/archived-projects/

Mediated Matter

Neri Oxman

Rhino, Grasshopper, and Python

open up Rhino

Open Grasshopper

Set up so you can see both applications

	Gr	asshopper - No documen	t					Untitled — Edited					
Params Maths Sets Vector	Curve Surface M	esh Intersect Transform [Display Pufferfish PanelingTo	ools Kangaroo2	Grid Snaj	Ortho Planar	smartTrack	Gumball H	story				
	 O (1) T (A) Primitive 	Input			Standard CPlanes Se	t View Display Select	Viewport Layout	Visibility Transform	Curve Tools	Surface Tools	Solid Tools	SubD Tools	Mesh Tools Re
■ 124% ✓ Either drag a new component onti- double click the canvas to create a or open an existing document via	o the canvas, a new component the menu or the tiles.					Top	ective Top	Perspective	Right	Layouts			
	> month stratorimport	> month Duplicatemoves	> month sineTwist		Persistent One shot End Near Point Midpoint Center Intersection Perpendicular Tangent Quadrant Knot Vertex On curve On surface On mesh	Perspective							
	> month sine	> month surfaceWithPattern	> month mod_lace_example		On mesh								

RhinoScript for Python Documentation

Open and bookmark:

https://developer.rhino3d.com/api/RhinoScriptSyntax

Points, Lines, and Surfaces

Python Code Block

Python Code Block

Points: rs.CreatePoint (x,y,z)

Python

Grasshopper

Rhino

CreatePoint Documentation

CreatePoint

CreatePoint(point, y=None, z=None)

Converts 'point' into a Rhino.Geometry.Point3d if possible. If the provided object is already a point, it value is copied. In case the conversion fails, an error is raised. Alternatively, you can also pass two coordinates singularly for a point on the XY plane, or three for a 3D point.

Parameters:

point (Point3d|Vector3d|Point3f|Vector3f|str|guid|[number, number, number])

Returns:

point: a Rhino.Geometry.Point3d. This can be seen as an object with three indices:

- [0] X coordinate
- [1] Y coordinate
- [2] Z coordinate.

https://developer.rhino3d.com/api/RhinoScriptSyntax/#utility-CreatePoint

Points & AddPolyline

import rhinoscriptsyntax as rs
import math

```
points = []
for i in range (0,100):
    x = i
    y = slope*x +2
    point = rs.CreatePoint(x,y)
    points.append(point)
```

```
line = rs.AddPolyline(points)
a = line
```


When adding the slope input

right click on variable to rename variable & access other options

remember to give a **Type hint** select Type hint select float

Cylindrical coordinates & a circle


```
def polarToXY(r,theta,z):
    x = r * math.cos(math.radians(theta))
    y = r * math.sin(math.radians(theta))
    point = rs.CreatePoint(x,y,z)
    return point
```

```
def circle(radius,z):
    points = []
    for i in range (0,361):
        r = radius
        point = polarToXY(r,i,z)
        points.append(point)
    return points
```

```
points = circle(radius,n,z)
line = rs.AddPolyline(points)
curve = rs.AddCurve(points)
curve2 = rs.AddInterpCurve(points)
```


a = line

Polygons


```
def polygon(radius, n,z):
    points = []
    for i in range (0,n+1):
        r = radius
        theta = 360/n*i
        point = polarToXY(r,theta,z)
        points.append(point)
    return points
```


Edit the n number slider to restrict range of values: 3 to 20

double click on slider for options

Slider

250	Slider: pointsPerSide					
	Properties					
	Name pointsPerSide					
	Expression					
	Grip Style Shape & Text 📀					
	Slider accuracy					
	Rounding \mathbb{R} \mathbb{N} \mathbb{E} \mathbb{O}					
	Digits 3					
	Numeric Domain					
	Min +0000000002					
	Max + 0 0 0 0 0 0 0 0 3 0					
	Range 000000028					

Add a z input slider

remember Type hint select **float**

Now we're going to create several polygons with different rs, ns, and zs

Lists in Grasshopper using Merge

The Merge block is a good way to create lists with specific entries. <u>https://grasshopperdocs.com/components/grasshoppersets/merge.html</u>

Create Merge blocks for r, n, and z with 3 entries each

rename them

Connect to Python block

Create a surface using Loft

Play with sliders

Create a solid with Cap

more interesting surfaces: r = f(angle)

Thank you!

CS 491 and 591 Professor: Leah Buechley https://handandmachine.org/classes/computational_fabrication/