Computational Fabrication

CS 491 and 591 Professor: Leah Buechley https://handandmachine.cs.unm.edu/classes/Computational_Fabrication_Spring2021/

CS Researcher: Stephanie Mueller

https://hcie.csail.mit.edu/stefanie-mueller.html https://hcie.csail.mit.edu/

Laser Origami

https://www.youtube.com/watch?v=arjRtCjI9AQ&ab_channel=StefanieMueller

Hidden 3D Printed Tags

Photo-Chromeleon

Yuhua Jin*, Isabel Qamar*, Michael Wessely*, Aradhana Adhikari, Katarina Bulovic, Parinya Punpongsanon, Stefanie Mueller *equal contribution

video: Tom Buehler

Tiling Assignment

Tiling Assignment: Bravais Lattices

Oblique lattice ($a \neq b, \gamma = arbitrary$)

Square lattice ($a = b, \gamma = 90^{\circ}$)

Rectangular lattice ($a \neq b, \gamma = 90^{\circ}$)

Hexagonal lattice ($a = b, \gamma = 120^{\circ}$)

Rhombic lattice ($a = b, \gamma = arbitrary$) Centered rectangular lattice

questions?

Schedule

Discrete Fabrication

A Different Kind of Computational Fabrication

Discrete Fabrication

Fabrication by combining discrete elements (ie: blocks) instead of continuous ones (ie: extruded filament)

Discrete Fabrication, "Digital Materials"

Lego vs. Clay

Modular, reconfigurable, more repeatable

Potentially faster and easier construction

Ability to work with more complex materials (ie: materials with embedded electronics)

Different way of characterizing and designing structures

Centralized Discrete Fabrication

Discrete Fabrication: Maeda Lab

Fig. 20 3D Block Printing

https://iir.ynu.ac.jp/ https://doi-org.libproxy.unm.edu/10.1080/24725854.2020.1755067

Simple assembly

https://www.youtube.com/watch?v=Bn0Jg326drw&ab_channel=AxisNewEngland

Electronics Fabrication

More complex assembly

https://www.youtube.com/watch?v=TzZHKEPqZ5I

A different kind of example

Suzuki et al. <u>https://ryosuzuki.org/dynablock/</u> https://www.youtube.com/watch?v=92eGI-gYYc4&t=1s

Benjamin Jenett, Center for Bits and Atoms

<u>https://vimeo.com/366238474</u> <u>https://bej.pages.cba.mit.edu/home/</u>, <u>http://cba.mit.edu/docs/papers/17.06.scitech.bille.pdf</u>

Decentralized Discrete Fabrication

Radhika Nagpal & the Self Organizing Systems Research Group

https://science.sciencemag.org/content/343/6172/754 https://www.youtube.com/watch?v=LFwk303p0zY&ab_channel=HarvardUniversity

How do many natural structures form?

Discrete components (atoms, molecules, animals, etc.) interact and sometimes form complex structures

Cellular automata are good at modeling this kind of behavior

https://www.complexity-explorables.org/explorables/particularly-stuck/

Can we build physical structures that have some of these characteristics?

Potential energy (stored in objects) + energy from the environment (heat, movement, etc.) = new forms

Mimics chemical and biological processes.

Self Assembly: Arthur Olson et al.

https://www.pnas.org/content/104/52/20731 https://www.youtube.com/watch?v=X-8MP7g8XOE&t=41s&ab_channel=ArthurOlson

Self Assembly: DNA Modeling

https://www.pnas.org/content/116/49/24402

https://news.cornell.edu/stories/2019/11/self-assembling-system-uses-magnets-mimic-specific-binding-dna

Skylar Tibbits and the Self Assembly Lab

https://selfassemblylab.mit.edu/

https://www.youtube.com/watch?v=MxCfB-ar7M4&ab_channel=BSHHomeAppliancesGroup

Self Assembly + Robotics

What if more energy and "intelligence" is in the blocks?

Radhika Nagpal & the Self Organizing Systems Research Group

Robots on the outer edge of the arbitrarily shaped starting group take turns starting motion.

https://ssr.seas.harvard.edu/

https://www.youtube.com/watch?v=xK54Bu9HFRw&ab_channel=HarvardUniversity

Hod Lipson and the Creative Machines Lab

<u>https://www.creativemachineslab.com/particle-robotics.html</u> <u>https://www.youtube.com/watch?v=LczD_rvWtSY&ab_channel=naturevideo</u>

Radhika Nagpal & the Self Organizing Systems Research Group

<u>https://ssr.seas.harvard.edu/</u> <u>https://www.youtube.com/watch?v=bcVa0PcIl_o&ab_channel=SSRLabHarvard</u>

Radhika Nagpal & the Self Organizing Systems Research Group

<u>https://ssr.seas.harvard.edu/</u> <u>https://www.youtube.com/watch?v=bcVa0PcIl_o&ab_channel=SSRLabHarvard</u>

Cubelets: A kit for kids

<u>https://modrobotics.com/</u> <u>https://www.youtube.com/watch?v=YPAOCOJibfQ&ab_channel=modrobotics</u>

Daniela Run and the Distributed Robotics Laboratory

<u>https://www.csail.mit.edu/research/distributed-robotics-laboratory</u> <u>https://www.youtube.com/watch?v=hI5UDKaWJOo&ab_channel=MITCSAIL</u>

questions?

Thank you!

CS 491 and 591 Professor: Leah Buechley https://handandmachine.cs.unm.edu/classes/Computational_Fabrication_Spring2021/