Computational Fabrication

CS 491 and 591
Professor: Leah Buechley
https://handandmachine.cs.unm.edu/classes/Computational_Fabrication_Spring2021/

Last Class: Categorizations of Tiles

Today: (Periodic) Tile Generation

Periodic Tilings and Wallpaper Groups

- Any periodic tiling can be characterized as a "wallpaper".
- Wallpaper Groups: formal categories that describe the types of symmetries present in a tiling
- Describing symmetry = describing transformations (translation, rotation, reflection). Useful information for constructing tilings.

Group p2 (2222) [edit]

- Orbifold signature: 2222
- Coxeter notation (rectangular): $[\infty, 2, \infty]^{+}$
- Lattice: oblique
- Point group: C_{2}
- The group p2 contains four rotation centres of order two (180 $)$, but no reflections or glide reflections.

Group pm (**) [edit]

Cell structure for $p m$

- Orbifold signature: **
- Coxeter notation: $\left[\infty, 2, \infty^{+}\right]$or $\left[\infty^{+}, 2, \infty\right]$
- Lattice: rectangular
- Point group: D_{1}
- The group $\boldsymbol{p m}$ has no rotations. It has reflection axes, they are all parallel.

17 Wallpaper Groups (2D)

Bravais Lattices

- Mathematical definition: an infinite arrangement of points in space such that the lattice looks exactly the same when viewed from any lattice point.
- In 3D, Bravais Lattices define the 14 different configurations into which atoms can be arranged in crystals.

14 3D Bravais Lattice Structures

5 2D Bravais Lattice Structures

Oblique lattice ($a \neq b, \gamma=$ arbitrary $)$

Square lattice $\left(a=b, \gamma=90^{\circ}\right)$

Rectangular lattice ($a \neq b, \gamma=90^{\circ}$)

Hexagonal lattice ($a=b, \gamma=120^{\circ}$)

Rhombic lattice ($a=b, \gamma=$ arbitrary) Centered rectangular lattice

17 Wallpaper Groups (2D)

Bravais Lattice Structures

Any periodic 2D tiling maps to one of these 5 fundamental lattice structures.

5 2D Bravais Lattice Structures

Oblique lattice ($a \neq b, \gamma=$ arbitrary $)$

Square lattice $\left(a=b, \gamma=90^{\circ}\right)$

Rectangular lattice ($a \neq b, \gamma=90^{\circ}$)

Hexagonal lattice ($a=b, \gamma=120^{\circ}$)

Rhombic lattice ($a=b, \gamma=$ arbitrary) Centered rectangular lattice

Note that they're all related

Oblique lattice ($a \neq b, \gamma=$ arbitrary $)$

Square lattice $\left(a=b, \gamma=90^{\circ}\right)$

Rectangular lattice $\left(a \neq b, \gamma=90^{\circ}\right)$

Hexagonal lattice ($a=b, \gamma=120^{\circ}$)

Rhombic lattice ($a=b, \gamma=$ arbitrary) Centered rectangular lattice

What we'll do today

1. Write code to generate these 2D lattices, illuminating some fundamental tiling geometry
2. Use our lattice generating code to generate 2D tiles and tilings

open up Rhino and Grasshopper

One lattice cell

Parametric lattice: 3 simple variables

- a
- b
- γ (angle)

Grasshopper \& Python

- Inputs:
- a, b, angle
- Output:
- lines for a and b
- vectors for a and b

Lines and vectors? Simple math

Grasshopper \& Python Code

- Inputs:
- a, b, angle

Output:

- lines for a and b
- vectors for a and b

input: Float Type hints

questions?

Generating the Lattice

Copy and translate cell using vectors

- Inputs:
- Lines
- vectors
- size of lattice
- Output:
- 2D lattice
as list of tiles
tile = closed curve

Grasshopper \& Python

- Inputs:
- Lines
- vectors
- size of lattice

- Output:
- 2D lattice as list of tiles tile = closed curve

Approach: 2D Lattice

- Copy input curves and translate along \mathbf{a} and \mathbf{b} vectors
- Use rs.MoveObject() to translate

Approach: 2D Lattice

```
1 import rhinoscriptsyntax as rs
2 import math
3import copy
4
5 lattice = []
6 for i in range (0,size+1):
7 row = []
8 for j in range(0,size+1):
9 new_lines = copy.deepcopy(lines)
10 rs.MoveObject(new_lines,vectors[0]*i) #translate cells along the a vector
11 rs.MoveObject(new_lines,vectors[1]*j) #translate cells along the b vector
12 row.append(new_lines)
13
    lattice.append(row)
```


questions?

Lattice output in Grasshopper

Grasshopper \& Python Data Structures

- Python: lists, arrays
- Grasshopper: 1D lists and trees only
- Grasshopper can't handle arrays :'(
- Can't manipulate data from arrays
- Can't render/visualize data from arrays

Lattice —> Tiles
 2D Array of Lines —> 1D List of Closed Curves

- Two tasks:

1. Generate Tiles (Closed Curves) from lines
2. Generate 1D List of Tiles as output

Find Tile Edges \& Generate Tile

```
23 for i in range (len(lattice)-1):
24 for j in range(len(lattice[i])-1):
25 edge0 = lattice[i][j][0] # left edge
26 edge1 = lattice[i+1][j][1] #top
27 edge2 = lattice[i][j+1][0] # right edge
28 edge3 = lattice[i][j][1] #bottom
29
    tile = rs.JoinCurves([edge0,edge1,edge2,edge3])
```


Add each tile to tiles list

```
22 tiles = []
23 for i in range (len(lattice)-1):
24 for \(j\) in range(len(lattice[i])-1):
25 edge0 = lattice[i][j][0] \# left edge
26 edge1 = lattice[i+1][j][1] \#top
27 edge2 = lattice[i][j+1][0] \# right edge
28 edge3 = lattice[i][j][1] \#bottom
29 tile = rs.JoinCurves([edge0,edge1,edge2, edge3])
30 tiles = tiles+tile
31
32 lattice = tiles
```


Grasshopper \& Python

- Inputs:
- Lines
- vectors
- size of lattice
- Output:
- 2D lattice as list of tiles tile = closed curve

questions?

What we'll do today

1. Write code to generate these 2D lattices and illuminate some fundamental tiling geometry
2. Use our lattice generating code to generate 2D tiles and tilings

What we'll do today

1. Write code to generate these 2D lattices and illuminate some fundamental tiling geometry
2. Use our lattice generating code to generate 2D tiles and tilings

What we'll do today

2. Use our lattice generating code to generate 2D tiles and tilings.

Adding some Escher-like tile manipulation

Suggestions for an approach?

Approach

1. Allow Escher input curves as \mathbf{a} and \mathbf{b} curves of lattice.
2. Input curve requirements:

- a curve: begins at origin and ends at point on y axis
- b curve: begins at origin and ends at point on x axis

3. Edit first Python block

- Accept Escher curves as input
- Output appropriately scaled and rotated Escher curves.

questions?

Draw Curves in Rhino

- a curve: begins at origin and ends at point on y axis
- b curve: begins at origin and ends at point on \times axis

Scale Curves to fit Lattice

1. Use rs.CurveEndPoint() to find end points of curves.
2. What does the end point tell us about the length of curve a?
3. Use rs.ScaleObject() to scale each curve
4. What is the scale factor for curve a ?

17 \#scale curves to match magnitude inputs
18 curve_a_length=rs.CurveEndPoint(curve_a). Y
19 a_scale = a_length/curve_a_length
20 rs.Scale0bject(curve_a, point, rs.CreatePoint(a_scale,a_scale,1))

Scale Curves to fit Lattice

Rotate Curves to fit Lattice

1. Which curves do we have to rotate?
2. What is the rotation angle in terms of the input angle?

22 rs.RotateObject(curve_a, point, angle-90) 23

Rotate Curves to fit Lattice

questions?

Connect Curves to Lattice Code

Connect Curves to Lattice Code

Connect Curves to Lattice Code

Rendered view in Rhino

Thank you!

CS 491 and 591
Professor: Leah Buechley
https://handandmachine.cs.unm.edu/classes/Computational_Fabrication_Spring2021/

