Computational Fabrication

CS 491 and 591 Professor: Leah Buechley https://handandmachine.cs.unm.edu/classes/Computational_Fabrication_Spring2021/

Last Class: Categorizations of Tiles

Today: (Periodic) Tile Generation

Periodic Tilings and Wallpaper Groups

- Any periodic tiling can be characterized as a "wallpaper".
- Wallpaper Groups: formal categories that describe the types of symmetries present in a tiling
- Describing symmetry = describing transformations (translation, rotation, reflection). Useful information for constructing tilings.

Group p2 (2222) [edit]

- Orbifold signature: 2222
- Coxeter notation (rectangular): [∞,2,∞]⁺
- Lattice: oblique
- Point group: C₂
- The group *p***2** contains four rotation centres of order two (180°), but no reflections or glide reflections.

Group pm (**) [edit]

- Orbifold signature: **
- Coxeter notation: [∞,2,∞⁺] or [∞⁺,2,∞]
- Lattice: rectangular
- Point group: D₁
- The group *pm* has no rotations. It has reflection axes, they are all parallel.

17 Wallpaper Groups (2D)

Square [4,4], •₄•₄•		Rectangular [∞ _h ,2,∞ _v],			<mark>Rhombic</mark> [∞ _h ,2 ⁺ ,∞ _v], •⊸ح,∞•			Hexagonal/Triangular [6,3], • ₆ ⊷ / [3 ^[3]], •(*			
IUC (Orb.) Geo	Coxeter	Domain Conway name	IUC (Orb.) Geo	Coxeter	Domain Conway name	IUC (Orb.) Geo	Coxeter	Domain Conway name	IUC (Orb.) Geo	Coxeter	Domain Conway name
p1 (°) p1			p1 (°) p1	[∞+,2,∞+] ∞} }∞		p1 (°) p1	[∞+,2+,∞+] ್ಹ⊕ ₂ ⊕ _∞ ○	Monotropic	р1 (°) р1		
p2 (2222) p2	[4,1 ⁺ ,4] ⁺ •• ⁴ 02 [1 ⁺ ,4,4,1 ⁺] ⁺		p2 (2222) p2	[∞,2,∞]+ ಂ _ಹ ಂ ₂ ಂಹ≎	Ditropic	p2 (2222) p2	[∞,2 ⁺ ,∞] ⁺ 28 [∞] / _∞ 82	Ditropic	p2 (2222) p2	[6,3] [∆]	Ditropic
pgg (22×) pa2a	• <u>4</u> • <u>4</u> • [4+,4+] ° <u>4</u> • <u>4</u> °		pg(h) (××) p _g 1	h: [∞+, (2,∞)+] ∞_⊕_2^⊙	Monoglide	cm(h) (*×) c1	h: [∞+,2+,∞] ್ಹ∿ ₂ ್ಹ•	Monorhombic	cmm (2*22) c2	[6,3] ^人	Dirhombic
pmm (*2222)	[4,1 ⁺ ,4] • <u>4</u> • <u>4</u> • [1 ⁺ ,4,4,1 ⁺]		pg(v) (××) p _g 1	v: [(∞,2) ⁺ ,∞ ⁺] ್ <u>∞</u> 20 <u>∞</u> 0	Monoglide	cm(v) (*x) c1	∨: [∞,2 ⁺ ,∞ ⁺] • <u>∞</u> 2 ⁰ ∞ 0	Monorhombic	p3 (333) p3	[1+,6,3+] •60-0 [3 ^[3]]+	Tritropic
cmm (2*22)	•4•4• [(4,4,2+)]	Discopic	pgm (22*) p _g 2	h: [(∞,2) ⁺ ,∞] ್ <u>⊸</u> ್2್∞●	Digyro	(22×) p _g 2 _g	[2]] o ^{2@} 20	Diglide	p3m1 (*333)	[1 ⁺ ,6,3] • ₆ ••• [3 ^[3]]	
c2	•\$2 [4,4]+	³² Dirhombic	pmg (22*) p _g 2	v: [∞, (2,∞) ⁺] • _∞ ° ₂ ° _∞ °	Digyro	cmm (2*22) c2	[∞,2 ⁺ ,∞] • <u>∞</u> _ <u>7</u>	Dirhombic	p3 p31m (3*3)	[6,3 ⁺]	Triscopic
(442) p4	$\frac{12}{4} \qquad \stackrel{\circ}{\circ_4 \circ_4 \circ} \qquad \stackrel{\bullet}{\longrightarrow} \stackrel{1}{\xrightarrow} \stackrel{\bullet}{\xrightarrow} \stackrel{\bullet}{$		pm(h) (**)	h: [∞+,2,∞]	۲ ٦	Parallelogrammatic (oblique)		rammatic jue)	h3	•_600	Trigyro
p4g (4*2) p _o 4			p1 pm(v)	v: [∞,2,∞+]	Monoscopic			-	р6 (632) р б	[6,3]⁺ ° ₆ °−°	Hexatropic
p4m	[4,4]	Tetrascopic	(**) p1	•• 00	Monoscopic	p2			p6m (*632)	[6,3]	
(*442) p4	•4•4•		pmm (*2222) p2	[∞,2,∞] • <u>∞</u> •• <u>∞</u> •		(22 P	(2222) p2 Ditropic		p6	•6• •	Hexascopic

Bravais Lattices

- Mathematical definition: an infinite arrangement of points in space such that the lattice looks exactly the same when viewed from any lattice point.
- In 3D, Bravais Lattices define the 14 different configurations into which atoms can be arranged in crystals.

14 3D Bravais Lattice Structures

Cructal Family	Lattice System	Schönflige	14 Bravais Lattices							
Crystal Failing	Lattice System	Schonnes	Primitive (P)	Base-centered (C)	Body-centered (I)	Face-centered (F)				
Triclinic		Ci	$ \begin{array}{c} \gamma \\ \beta \\ \alpha \\ b \end{array} $							
Monoclinic		C _{2h}	$\beta \neq 90^{\circ}$ $a \neq c$ $a \neq c$ b	$\beta \neq 90^{\circ}$ $a \neq c$ $a \neq c$ b						
Orthorhombic		D _{2h}	$a \neq b \neq c$	$a \neq b \neq c$	$a \neq b \neq c$	$a \neq b \neq c$				
Tetragonal		D _{4h}			$a \neq c$					
Hexagonal	Rhombohedral	D _{3d}	$ \begin{array}{c} \alpha \neq 90^{\circ} \\ \alpha \\ \alpha \\ \alpha \\ a \\ a \\ a \end{array} $							
	Hexagonal	D _{6h}								
Cu	lbic	O _h			a					

5 2D Bravais Lattice Structures

Oblique lattice ($a \neq b, \gamma = arbitrary$)

Square lattice ($a = b, \gamma = 90^{\circ}$)

Rectangular lattice ($a \neq b$, $\gamma = 90^{\circ}$)

Hexagonal lattice ($a = b, \gamma = 120^{\circ}$)

Rhombic lattice ($a = b, \gamma = arbitrary$) Centered rectangular lattice

17 Wallpaper Groups (2D)

	Square [4,4], • ₄ • ₄	.)		Rectang [∞ _h ,2,∞ _v],	gular •∞••∞•		Rhon [∞ _h ,2 ⁺ ,∞ _v]	nbic , • _∞ - ₂ -∞•	(F	lexagonal [6,3], • ₆ •-•	/Triangular / [3 ^[3]], <]
IUC (Orb.) Geo	Coxeter	Domain Conway name	IUC (Orb.) Geo	Coxeter	Domain Conway name	IUC (Orb.) Geo	Coxeter	Domain Conway name	IUC (Orb.) Geo	Coxeter	Domain Conway name
p1 (°) p1			p1 (°) p1	[∞+,2,∞+] ∞0 0∞	 Monotropic	p1 (°) p1	[∞ ⁺ ,2 ⁺ ,∞ ⁺] ್ಹ⊕ ₂ ⊕ _∞ ○	Monotropic	p1 (°) p1		Monotropic
p2 (2222) p2	[4,1+,4]+ ••402 [1+,4,4,1+]+ ± ± ±	Ditropic	p2 (2222) p2	[∞,2,∞]+ ಂ _ಹ ಂ ₂ ಂಹಂ	- Ditropic	p2 (2222) p2	[∞,2 ⁺ ,∞] ⁺ 28 ∞ 82	Ditropic	p2 (2222) p2	[6,3] [∆]	Ditropic
pgg (22×)	• <u>4</u> • <u>4</u> • [4+,4+] • <u>4</u> • <u>4</u> •		pg(h) (××) p _g 1	h: [∞+, (2,∞)+] ∞_⊕_2^⊙	Monoglide	cm(h) (*×) c1	h: [∞+,2+,∞] ್ಹ≎ <u>2</u> ~ <u>∞</u> ●	Monorhombic	cmm (2*22) c2	[6,3] ^人	Dirhombic
pmm (*2222)	[4,1 ⁺ ,4] • <u>4</u> • <u>4</u> • [1 ⁺ ,4,4,1 ⁺]		pg(v) (××) p _g 1	v: [(∞,2) ⁺ ,∞ ⁺] ್ಹಿಂ	Monoglide	cm(v) (*x) c1	V: $[\infty, 2^+, \infty^+]$ $\bullet_{\infty} \circ_{\overline{2}} \circ_{\overline{\infty}} \circ$ $[((\infty, 2)^+)]$	Monorhombic	p3 (333) p3	[1+,6,3+] • ₆ 00 [3 ^[3]]+ ℃>0	Tritropic
cmm	i ₄ • ₄ • i [(4,4,2 ⁺)]	Discopic	pgm (22*) p _g 2	h: [(∞,2) ⁺ ,∞] ್ <u>⊸</u> ್°●	Digyro	(22×) p _g 2 _g	[2]] o ^{2@} 20	Diglide	p3m1 (*333)	[1+,6,3] •6••	
(2*22) c2	•\$\$2	Dirhombic	pmg (22*)	v: [∞, (2,∞)+]	L J	cmm (2*22) c2	[∞,2 ⁺ ,∞] • <u>≂</u> 2 <u>~</u> —•	Dirhombic	p3	[3: ·]]>	Triscopic
p4 (442) p4	[4,4] ⁺ ° ₄ ° ₄ °		p _g 2 pm(h)	• <u></u> _20_0 h: [∞+,2,∞]	Digyro		Parallelogi	rammatic	(3*3) h3	[6,3⁺] • _ਓ ≎≎	Trigyro
p4g (4*2)	[4+,4]		(**) p1	∞ ⊷	Monoscopic	p	01 °)	ue)	p6 (632)	[6,3]+ ୍ଟ୍ରେ-୦	¢< _ 20 ℃ 4 20
p _g 4	° ₄ ° ₄ •	Tetragyro	pm(v) (**) p1	v: [∞,2,∞+] • <u>⊸</u> • ○ <u>⊸</u> ○	Monoscopic	p1		lonotropic	p6 p6m	[6,3]	Hexatropic
(*442) p4	(4,4) (4,4) (4,4) (4,4) (1,4)		pmm (*2222) p2	[∞,2,∞] • <u>∞</u> • • <u>∞</u> •		(2222) p2 Ditropic		(*632) p6	•6•••	Hexascopic	

Bravais Lattice Structures

Any periodic 2D tiling maps to one of these 5 fundamental lattice structures.

5 2D Bravais Lattice Structures

Oblique lattice ($a \neq b, \gamma = arbitrary$)

Square lattice ($a = b, \gamma = 90^{\circ}$)

Rectangular lattice ($a \neq b$, $\gamma = 90^{\circ}$)

Hexagonal lattice ($a = b, \gamma = 120^{\circ}$)

Rhombic lattice ($a = b, \gamma = arbitrary$) Centered rectangular lattice

Note that they're all related

Oblique lattice ($a \neq b, \gamma = arbitrary$)

Square lattice ($a = b, \gamma = 90^{\circ}$)

Rectangular lattice ($a \neq b$, $\gamma = 90^{\circ}$)

Hexagonal lattice ($a = b, \gamma = 120^{\circ}$)

Rhombic lattice ($a = b, \gamma = arbitrary$) Centered rectangular lattice

- Write code to generate these 2D lattices, illuminating some fundamental tiling geometry
- 2. Use our lattice generating code to generate 2D tiles and tilings

open up Rhino and Grasshopper

Grasshopper - No document	💿 💿 💿 Untitled — Edited								
Params Maths Sets Vector Curve Surface Mesh Intersect Transform Display Pufferfish PanelingTools Kangaroo2	Grid Snap Ortho Planar SmartTrack Gumball History 🖓 🕞 🔘 🔳 Default								
3 000 00	Standard CPlanes Set View Display Select Viewport Layout Visibility Transform Curve Tools Surface Tools Solid Tools SubD Tools Mesh Tools								
⊘ � ⊘ ⊗ ⊘ ⊕ ⊕ 💫 ● ⊟ 🔛 🕿 ⇔ 🍐	🖑 🔶 🖉 🖗 🕼 🖉 😓 🖉 🖉 🖉 🖉 🖉 🖛 🖛 🖛 🖉 🎜 🔞 🖉 🖉 🖗 🖗 🗮 ★ ★ 🛩								
Geometry + Primitive + Input + Util +	₩ ×								
	E Perspective Top Perspective Right Layouts								
	Command								
Either arag a new component onto the canvas, double click the canvas to create a new component									
or open an existing document via the menu or the tiles.									
	🗛 👶 ን 🔭 🏗								
	y y								
	One shot								
	Perspective								
	Point								
	C Midpoint								
	Perpendicular								
	Quadrant								
> month > month	C Knot								
IllustratorImport Duplicatemoves sineTwist	O On curve								
	On surface								
> month > month	On polysurface								
sine surfaceWithPattern mod_lace_example	Project								

One lattice cell

Parametric lattice: 3 simple variables

• a

```
• b
```

γ (angle)

Grasshopper & Python

- Inputs:
 a, b, angle
- Output:
 - lines for a and b
 - vectors for a and b

Lines and vectors? Simple math

Grasshopper & Python Code

- Inputs:
 a, b, angle
- Output:
 - lines for a and b
 - vectors for a and b

input: Float Type hints

questions?

Generating the Lattice

Copy and translate cell using vectors

- Inputs:
 - lines
 - vectors
 - size of lattice
- Output:
 - 2D lattice as list of tiles tile = closed curve

Grasshopper & Python

- Inputs:
 - lines
 - vectors
 - size of lattice
- Output:
 2D lattice
 - as list of tiles tile = closed curve

lines: **Curve** type hint vectors: **Point** type hint size: **int** type hing

Approach: 2D Lattice

- Copy input curves and translate along
 a and b vectors
- Use rs.MoveObject() to translate

Approach: 2D Lattice

```
1 import rhinoscriptsyntax as rs
 2 import math
 3 import copy
 4
 5 \text{ lattice} = []
 6 for i in range (0,size+1):
      row = []
 7
      for j in range(0,size+1):
8
9
           new lines = copy.deepcopy(lines)
           rs.MoveObject(new lines,vectors[0]*i) #translate cells along the a vector
10
11
           rs.MoveObject(new_lines,vectors[1]*j) #translate cells along the b vector
12
           row.append(new lines)
      lattice.append(row)
13
```

questions?

Lattice output in Grasshopper

Grasshopper & Python Data Structures

- Python: lists, arrays
- Grasshopper: 1D lists and trees only
- Grasshopper can't handle arrays :'(
 - Can't manipulate data from arrays
 - Can't render/visualize data from arrays

Lattice —> Tiles 2D Array of Lines —> 1D List of Closed Curves

- Two tasks:
 - Generate Tiles (Closed Curves) from lines
 Generate 1D List of Tiles as output

Find Tile Edges & Generate Tile

```
23 for i in range (len(lattice)-1):
24   for j in range(len(lattice[i])-1):
25      edge0 = lattice[i][j][0] # left edge
26      edge1 = lattice[i+1][j][1] #top
27      edge2 = lattice[i][j+1][0] # right edge
28      edge3 = lattice[i][j][1] #bottom
29      tile = rs.JoinCurves([edge0,edge1,edge2,edge3])
```

Add each tile to **tiles** list

```
22 \text{ tiles} = []
23 for i in range (len(lattice)-1):
      for j in range(len(lattice[i])-1):
24
           edge0 = lattice[i][j][0] # left edge
25
           edge1 = lattice[i+1][j][1] #top
26
           edge2 = lattice[i][j+1][0] # right edge
27
           edge3 = lattice[i][j][1] #bottom
28
           tile = rs.JoinCurves([edge0,edge1,edge2,edge3])
29
30
           tiles = tiles + tile
31
32 lattice = tiles
```

Grasshopper & Python

- Inputs:
 - lines
 - vectors
 - size of lattice
- Output:
 - 2D lattice as list of tiles tile = closed curve

questions?

- Write code to generate these 2D lattices and illuminate some fundamental tiling geometry
- 2. Use our lattice generating code to generate 2D tiles and tilings

- Write code to generate these 2D lattices and illuminate some fundamental tiling geometry
- 2. Use our lattice generating code to generate 2D tiles and tilings

2. Use our lattice generating code to generate 2D tiles and tilings.

Adding some Escher-like tile manipulation

Suggestions for an approach?

Approach

- 1. Allow Escher input curves as **a** and **b** curves of lattice.
- 2. Input curve requirements:
 - a curve: begins at origin and ends at point on y axis
 - b curve: begins at origin and ends at point on x axis
- 3. Edit first Python block
 - Accept Escher curves as input
 - Output appropriately scaled and rotated Escher curves.

questions?

Draw Curves in Rhino

- a curve: begins at origin and ends at point on y axis
- b curve: begins at origin and ends at point on x axis

Scale Curves to fit Lattice

- 1. Use **rs.CurveEndPoint()** to find end points of curves.
- 2. What does the end point tell us about the length of curve **a**?
- 3. Use **rs.ScaleObject()** to scale each curve
- 4. What is the scale factor for curve **a**?

17 #scale curves to match magnitude inputs
18 curve_a_length=rs.CurveEndPoint(curve_a).Y
19 a_scale = a_length/curve_a_length
20 rs.ScaleObject(curve_a, point, rs.CreatePoint(a_scale,a_scale,1))

Scale Curves to fit Lattice

Rotate Curves to fit Lattice

- 1. Which curves do we have to rotate?
- 2. What is the rotation angle in terms of the input angle?

22 rs.RotateObject(curve_a,point,angle-90)
23

Rotate Curves to fit Lattice

questions?

Connect Curves to Lattice Code

Connect Curves to Lattice Code

Connect Curves to Lattice Code

Rendered view in Rhino

Thank you!

CS 491 and 591 Professor: Leah Buechley https://handandmachine.cs.unm.edu/classes/Computational_Fabrication_Spring2021/