Computational Fabrication

CS 491 and 591
Professor: Leah Buechley
https://handandmachine.cs.unm.edu/classes/Computational_Fabrication_Spring2021/

Artist: Travis Fitch

https://fitchwork.com/
https://www.instagram.com/fitchwork/
https://www.futurecurrent.net/travis-fitch

Tiling

Huge topic! We'll scratch the surface a little.

2D Tiling/Tessellations

What is a Tiling?

A tiling (of the plane) is a collection of tiles (subsets of the plane), which cover the plane without gaps or overlaps. We also require that each tile consists of a single connected piece without holes or lines.
http://pi.math.cornell.edu/~mec/2008-2009/KathrynLindsey/PROJECT/Page1.htm

Regular Tilings

Tiling by a single regular polygon
Regular polygon: shapes where all sides and angles are the same

Regular tiling: all vertices are the same

3 Regular Tilings

The Only Regular Tilings!

Why?

interior angle \times integer $=360$

angle $=60$
$60 \times 6=360$

angle $=90$
$90 \times 4=360$

angle $=120$
$120 \times 3=360$

Why not Pentagons?

interior angle \times integer $=360$

pentagon
interior angle $=108$

$108 \times 3=324$
$108 \times 4=432$

Why not greater than 6 sides?

angle $=120$
$120 \times 3=360$

heptagon
angle $=128$
$128 \times 3=384$

There are Only 3 Regular Tilings

Monohedral Tilings

Tiling by a single shape No other constraints

Example: a tiling with nonregular pentagons

Lots of Monohedral Tilings!

Monohedral Tilings: a Question

If you are given a tile, can you determine if it tiles the plane?

Monohedral Tilings

If you are given a tile, can you determine if it tiles the plane?

An open question!
May be undecidable. We don't know!

Lots of interesting open tiling questions in CS theory!

Back to Regular Tilings

Semi-Regular Tilings

Tilings by one or more regular polygons
All vertices are the same

Eight Semi-Regular Tilings

Demi-Regular Tilings

Also known as 2-Uniform Tilings
Tilings by one or more regular polygons

Two types of vertices

k-Uniform Tilings

Tilings by one or more regular polygons
k types of vertices
Example: 5-uniform tiling

Different Kinds of Tilings

Nonperiodic Tilings

A tiling that you cannot replicate by translation

Think about wallpaper. A tiling you cannot create a wallpaper from.

Note: does not rule out radial symmetry

Aperiodic Tilings

A set of tiles that can only create Non-periodic tilings.

Negative example on the right.

Aperiodic Tiling: Penrose Tiling

Tiles

http://pi.math.cornell.edu/~mec/2008-2009/KathrynLindsey/PROJECT/Page5.htm

Aperiodic Tiling: Penrose Tiling

Tiles

Note: does not rule out radial symmetry

Rep Tiles Self-Similar/Fractal Tiles

Rep-Tiles

Rep-Tiles

Can you break the shape into 4 copies of itself?

This one?

This one?

Escher Tiles

M.C. Escher

Creating Interesting Tiles

How to create your own tiles using existing tilings as a starting point.

Modify two matching edges or vertices in the same way

Cls)

Creating Interesting Tiles

http://www.shodor.org/interactivate/activities/Tessellate/

2.5 D Tiling/Tessellations

Raffello Galiotto for Lithos Design https://www.lithosdesign.com/

Creating Interesting Tiles

Use one of the foundational tilings as a starting point.
Add complexity (in 2D or 3D). Constraint: maintain edge relationships

Tile through repetition, consider fractalization
Morph across surface

questions?

Thank you!

CS 491 and 591
Professor: Leah Buechley
https://handandmachine.cs.unm.edu/classes/Computational_Fabrication_Spring2021/

