Computational Fabrication

CS 491 and 591 Professor: Leah Buechley https://handandmachine.cs.unm.edu/classes/Computational_Fabrication_Spring2021/

CS Researcher (Designer): Lining Yao

https://www.morphingmatter.cs.cmu.edu/

Final Project Proposals

https://handandmachine.org/classes/computational_fabrication/2023/10/10/final-project-proposal-4/

Mathematical Tiling + Baking

https://handandmachine.org/classes/computational_fabrication/2022/05/10/jaminis-final-project/

Jamini Sahu

Modeling Ripples on Fluid + Baking

Amber Sustaita and Reuben Fresquez

Metal Lamps via Plasma Cutter

Alyshia Bustos

Chess Game

Kai Vallon & Chris Shelton

1D Cellular Automata & Genetic Algorithms

https://handandmachine.org/classes/computational_fabrication/2022/05/10/final-project-abraham-dominguez-hernandez/

Abraham Fernandez

Music + Signal Processing + Jewelry

Michelle Louie

Michelle Louie

questions?

Large Assignment 4: G-Code

Due on Halloween (Tuesday October 31) Create three objects by generating gcode https://handandmachine.org/classes/computational_fabrication/2023/10/19/gcode/

questions?

Today: GCODE Extruder Turtle Library

Extruder Turtle Library

Turtle generates a 3D printed path as it moves by generating g-code

https://handandmachine.org/projects/extruder_turtle_rhino/

Functionality: Movement

- **t.forward**(distance) moves the turtle forward by a given distance, extruding along the way if the pen is down.
- **t.left**(theta) turns the turtle left by a given angle. This is an alias for t.yaw(theta).
- t.right(theta) turns the turtle right by a given angle. This is an alias for t.yaw(-theta).
- t.pitch_up(theta) tilts the turtle "upwards" in the direction its eyes would point. Alias for t.pitch(theta).
- **t.pitch_down**(theta) tilts the turtle "downwards". Alias for t.pitch(-theta).
- t.roll_left(theta) rolls the turtle towards its left side. Alias for t.roll(-theta).
- t.roll_right(theta) rolls the turtle towards its right side. Alias for t.roll(theta).
- t.lift(height) lifts the turtle up by a given height. Usually used to move from one layer of a print to the next.
- **t.penup**() lifts the pen up. No extrusion will occur until it is put down again.
- **t.pendown**() puts the pen down. Extrusion will occur at a constant rate with each movement unless the pen is lifted up.

https://handandmachine.org/projects/extruder_turtle_rhino/

Functionality: Setup

- The constructor **t** = **ExtruderTurtle()** takes no arguments and creates a new turtle
- t.set_extrude_rate(extrude_rate) sets the density of extrusion, or the rate at which filament is extruded, measured in millimeters of filament per millimeters of movement.
- t.set_speed(speed) sets the "feedrate" or speed of the extruder.
- **t.setup()** writes the sequence of initialization commands to the g-code file (which moves the nozzle to its starting position, heats the bed and extruder, and so on). Optional arguments allow you to customize the setup process:
 - x=0 is the starting x-value
 - y=0 is the starting y-value
 - feedrate=100 is the starting feedrate/speed
 - hotend_temp=215 is the default hotend temperature
 - bed_temp=60 is the default bed temperature
- **t.finish**() carries out the finalization sequence (moves the extruder upwards, cools the bed and extruder, etc).

Functionality: GH/Rhino

- t.draw_turtle() generates a triangular surface that shows you the position and orientation of the Turtle in 3D space
- t.get_lines() generates a list of lines that allow you to visualize the path of the turtle in Rhino

GCode file structure

Header (supplied by library): home extruder heat up bed and nozzle extrude lines along edge

Main code (generated by turtle movement): move extruder to start point build shape with G1 commands E commands determine amount of filament extruded

Footer (supplied by library): return home turn off heaters and fans

questions?

Experiment with the 3D Turtle

Drag out a Python scripting block and add the import statements below.

import extruder_turtle
from extruder_turtle import *

Check to make sure this compiles. If it doesn't something went wrong with installation. Go through the steps again.

Draw Polygons

```
1 import rhinoscriptsyntax as rs
2 import extruder_turtle
3 from extruder_turtle import *
4
5 t = ExtruderTurtle()
6
7 for i in range (0,sides):
8     t.forward(size)
9     t.left(360/sides)
10
11 lines = t.get_lines()
12 turtle = t.draw_turtle()
```


Draw Prisms

```
1 import rhinoscriptsyntax as rs
 2 import extruder_turtle
 3 from extruder_turtle import *
 4
 5 t = ExtruderTurtle()
 6
7 for h in range (0, height):
      for i in range (0,sides):
 8
          t.forward(size)
 9
10
          t.left(360/sides)
      t.lift(.2)
11
12
13 lines = t.get_lines()
14 turtle = t.draw_turtle()
```


Turtle to GCode

Files in Grasshopper

Drag out a new Python scripting block and add the statements below: https://handandmachine.org/classes/computational_fabrication/

```
Grasshopper Python Script Editor

1 import rhinoscriptsyntax as rs
2
3 #Create a new file
4 filter = "GCode (*.gcode)|*.gcode|All Files (*.*)|*.*||"
5 file = rs.SaveFileName("", filter)
6
```


import rhinoscriptsyntax as rs

```
#Create a new file
filter = "GCode (*.gcode)|*.gcode|All Files (*.*)|*.*||"
file = rs.SaveFileName("", filter)
```

change the name of the output to "file" to match code

Choose a name for your generated file Connect to your other Python block

	No Type Hint		
	ghdoc Object when geometry (rh		
	float		
	bool		
	int		
	Complex		
~	str		
	DateTime		
	Guid		
	System.Drawing.Color		

choose **str** as the Type Hint for the "file" input

Turtle to GCode: Add Lines

```
1 import rhinoscriptsyntax as rs
 2 import extruder_turtle
 3 from extruder_turtle import *
 4
 5 t = ExtruderTurtle()
 6 t.setup(filename=file, printer = "ender")
 8 for h in range (0,height):
      for i in range (0,sides):
 9
          t.forward(size)
10
11
          t.left(360/sides)
12
      t.lift(.2)
13
14 lines = t.get_lines()
15 turtle = t.draw_turtle()
16 t.finish()
```

Look at the G-Code you generated

1	; ############### begin header for Ender ####################################
2	G92 E0 ; Reset Extruder
3	G28 ; Home all axes
4	G90 ; Absolute coordinates for X,Y,Z
5	M190 S60 ; Set bed temperature and wait
6	M109 S205 ; Set extruder temperature and wait
7	G1 Z2.0 F3000 ; Move Z to 2mm above bed
8	G1 X0.1 Y20 Z0.3 F5000.0 ; Move to start position
9	G1 X0.1 Y200.0 Z0.3 F1500.0 E15 ; Draw the first line
10	G1 X0.4 Y200.0 Z0.3 F5000.0 ; Move to side a little
11	G1 X0.4 Y20 Z0.3 F1500.0 E30 ; Draw the second line
12	G92 E0 ; Reset Extruder
13	G1 Z2.0 F3000 ; Move Z Axis up little to prevent scratching of Heat Bed
14	G1 X5 Y20 Z0.3 F5000.0 ; Move over to prevent blob squish
15	G92 E0 ; Reset extruder position to zero
16	G1 F300 E-3
17	G1 F2000
18	G1 0 0 .3 ; lift nozzle above bed a little
19	
20	G1 X0 Y0 Z0 ; go to the starting position
21	F300 E3 ; Extrude to get ready
22	
23	G1 F1000 ; set the speed/feedrate
24	M83 ; Relative extrustion
25	G91 ; relative coordinates for X,Y,Z axes
26	; ####################################

28	G1	X10.0 Y0.0 Z0.0 E0.5
29	G1	X6.2349 Y7.81831 Z0.0 E0.5
30	G1	X-2.22521 Y9.74928 Z0.0 E0.5
31	G1	X-9.00969 Y4.33884 Z0.0 E0.5
32	G1	X-9.00969 Y-4.33884 Z0.0 E0.5
33	G1	X-2.22521 Y-9.74928 Z0.0 E0.5
34	G1	X6.2349 Y-7.81831 Z0.0 E0.5
35	G1	Z0.2
36	G1	X10.0 Y-0.0 Z0.0 E0.5
37	G1	X6.2349 Y7.81831 Z0.0 E0.5
38	G1	X-2.22521 Y9.74928 Z0.0 E0.5
39	G1	X-9.00969 Y4.33884 Z0.0 E0.5
40	G1	X-9.00969 Y-4.33884 Z0.0 E0.5
41	G1	X-2.22521 Y-9.74928 Z0.0 E0.5
42	G1	X6.2349 Y-7.81831 Z0.0 E0.5
43	G1	20.2
44	G1	X10.0 Y-0.0 Z0.0 E0.5
45	G1	X6.2349 Y7.81831 Z0.0 E0.5
46	G1	X-2.22521 Y9.74928 Z0.0 E0.5
47	G1	X-9.00969 Y4.33884 Z0.0 E0.5
48	G1	X-9.00969 Y-4.33884 Z0.0 E0.5
49	G1	X-2.22521 Y-9.74928 Z0.0 E0.5
50	G1	X6.2349 Y-7.81831 Z0.0 E0.5
51	G1	Z0.2

Open G-Code file in Cura

Print!

Why generate your own G-Code?

DIRECT MACHINE CONTROL

- elif (printer=="Eazao" or printer=="eazao"): if(self.out_file): self.initseq_filename = os.path.join self.nozzle = 1.5 self.extrude_width = 2.2 self.layer_height = 1.0 self.extrude_rate = 1.0 #mm extruded/mm self.speed = 1500 #mm/minute self.printer = "eazao" self.resolution = 1.0 self.x_size = 150 self.y_size = 150
- Skip CAD design and slicing software
- Design a toolpath directly by writing code
- Output = 3D printer tool path
- Toolpath determines geometry
- Toolpath also determines surface properties
- Fine-grained control over printer behavior

OUR SOFTWARE LIBRARY

Slice shape or build directly with toolpath
Toolpath = slice of object + path pattern

EXAMPLES

ANOTHER EXAMPLE: 2D MATRIX TO VESSEL

More examples

Artist: LIA

<u>https://www.liaworks.com/</u> <u>https://www.liaworks.com/theprojects/filament-sculptures/</u>

https://vimeo.com/85913081?embedded=true&source=vimeo_logo&owner=392793

Modifying Existing G-Code Files Experiments by Franklin Pezutti-Dyer

"Pug buddy" test print

Alteration of the "Pug buddy" test print in which more and more randomness is added for layers with higher Z-values

Same premise, but with less randomness, and a more gradual increase in randomness

Another example, in which randomness is only added to the right side (Only perturb coordinates with an X-value above the average X-value)

A different transformation: "twist" the print by rotating X and Y coordinates about a vertical axis, increasing the rotation amount for layers with greater Z-values

Some failed experiments:

NAILED IT!

Thank you!

CS 491 and 591 Professor: Leah Buechley https://handandmachine.cs.unm.edu/classes/Computational_Fabrication_Spring2021/