Computational Fabrication

CS 491 and 591 Professor: Leah Buechley https://handandmachine.cs.unm.edu/classes/Computational_Fabrication_Spring2021/

Final Project Proposals

https://handandmachine.org/classes/computational_fabrication/2023/10/10/final-project-proposal-4/

CS Researcher (Designer): Lining Yao

https://www.morphingmatter.cs.cmu.edu/

Data Physicalization Projects

CAD CAM

CAD CAM computer aided design

CAD CAM computer aided manufacturing

3D Printing Workflow

CAD: Rhino, Grasshopper, and Python: design your geometry.

CAM part 1: Cura (or other "slicer"): translate geometry into machine readable (g-code) file by slicing it layer by layer and generating a tool path for each layer.

CAM part 2: Transfer the g-code file to the 3D printer. 3D printer interprets the g-code, (follows the tool path) and generates your artifact.

G-Code Machine Code

https://www.autodesk.com/products/fusion-360/blog/computer-aided-manufacturing-beginners/

G-Code Overview

The language of machines; the code that tells the 3D printer (or other machine) what to do.

G-Code file: a series of simple commands that are interpreted line by line by the machine. Each line is one integrated command.

Basic elements of control:

- Movement of print head in x,y,z
- Extrusion of material (in one dimension)
- Temperature of bed and extruder ("hot end")

Command reference: <u>https://reprap.org/wiki/G-code</u>

Movement (mm) G1 or G01

Absolute (G90) vs. Relative (G91) Mode

G90 G01 X50 Y50 G01 X100 Y0

(Absolute coordinates)

G91 G01 X50 Y50 G01 X100 Y0

(Relative coordinates)

Speed, AKA "Feedrate" (mm/minute) F

G01 X100 Y100 F100

The speed of the print head as it moves from one point to another.

F1000 good starter speed

Extrusion (mm)

The amount of filament to extrude in mm across specified path.

Temperature

M104 S215 M109 S215

(Set hotend temperature, and wait)

M140 S60 M190 S60

(Set bed temperature, and wait)

M104: set extruder temperature, M140: set bed temperature

Other Useful Commands

G28 Home all axes

Mo Pause and wait for user interaction G04 S100 Pause and wait for 100 ms, then continue

M84 Disable Motors

; Comments are anything on a line that follow a semi-colon

An Example File: Bed Leveling

G90 ; Absolute mode for position

G28 ; Home all axis G1 Z5 ; Lift Z axis G1 X32 Y36 F3000; Move to Position 1 G1 Z0 ; Move Z axis down M0 ; Pause print

G1 Z10 ; Lift Z axis
G1 X32 Y206 F3000; Move to Position 2
G1 Z0 ; Move Z axis down
M0 ; Pause print

G1 Z5 ; Lift Z axis G1 X202 Y206 F3000; Move to Position 3 G1 Z0 M0 ; Pause print

G1 Z5 ; Lift Z axis G1 X202 Y36 F3000; Move to Position 4 G1 Z0

An Example File: Draw a Square

G92 E0 ; Reset Extruder G28 ; Home all axes M190 S60 ; Set bed temperature and wait M109 S205 ; Set extruder temperature and wait G1 F1000 ; Set feedrate (speed) to 1000 mm/s G91 ; Relative mode for position

; Draw a square G1 X50.0 Y0.0 Z0.0 E5.0 G1 X0.0 Y50.0 Z0.0 E5.0 G1 X-50.0 Y0.0 Z0.0 E5.0 G1 X-0.0 Y-50.0 Z0.0 E5.0

Preview in Cura

questions?

Thank you!

CS 491 and 591 Professor: Leah Buechley https://handandmachine.cs.unm.edu/classes/Computational_Fabrication_Spring2021/