

Relations Chapter 9

CS261 Mathematical Foundations of CS Professor Leah Buechley Spring 2024 University of New Mexico

© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.

Chapter Summary

Relations and Their Properties.

- *n*-ary Relations and Their Applications.
- Representing Relations.

Closures of Relations.

Relations and Their Properties

Section 9.1

Section Summary 1

Relations and Functions.

Properties of Relations.

- Reflexive Relations.
- Symmetric and Antisymmetric Relations.
- Transitive Relations.

Combining Relations.

Binary Relations

Definition: A *binary relation R* from a set *A* to a set *B* is a subset $R \subset A \times B$.

Example:

- Let $A = \{0, 1, 2\}$ and $B = \{a, b\}.$
- $\{(0, a), (0, b), (1, a), (2, b)\}$ is a relation from *A* to *B*.
- We can represent relations from a set *A* to a set *B* graphically or using a table:

Relations are more general than functions. A function is a relation where exactly one element of *B* is related to each element of *A.*

Binary Relations on a Set.

Definition: A binary relation *R on a set A* is a subset of *A* × *A* or a relation from *A* to *A*.

Example:

- Suppose that $A = \{a,b,c\}$. Then $R = \{(a,a),(a,b),(a,c)\}$ is a relation on *A*.
- Let $A = \{1, 2, 3, 4\}$. The ordered pairs in the relation $R = \{(a, b) | a \text{ divides } b\}$ are $(1, 1)$, $(1, 2)$, $(1, 3)$, $(1, 4)$, $(2, 2)$, $(2, 4)$, $(3, 3)$, and $(4, 4)$.

Binary Relations on a Set.

Question: How many relations are there on a set *A*?

Solution: Because a relation on *A* is the same thing as a subset of *A* × *A*, we count the subsets of *A* × *A*. Since $A \times A$ has n^2 elements when *A* has *n* elements, and a set with *m* elements has 2*^m* subsets, there are subsets of *A* × *A*. Therefore, there are relations on a set *A*.

Binary Relations on a Set₃

Example: Consider these relations on the set of integers:

$$
R_1 = \{(a,b) | a \le b\}, \t R_4 = \{(a,b) | a = b\},
$$

\n
$$
R_2 = \{(a,b) | a > b\}, \t R_5 = \{(a,b) | a = b+1\},
$$

\n
$$
R_3 = \{(a,b) | a = b \text{ or } a = -b\}, \t R_6 = \{(a,b) | a+b \le 3\}.
$$

Note that these relations are on an infinite set and each of these relations is an infinite set.

Which of these relations contain each of the pairs

 $(1,1)$, $(1, 2)$, $(2, 1)$, $(1, -1)$, and $(2, 2)$?

Solution: Checking the conditions that define each relation, we see that the pair (1,1) is in R_1, R_2, R_4 , and R_6 : (1,2) is in R_1 and R_6 : (2,1) is in R_2 , R_5 , and R_6 : (1, -1) is in R_2 , R_3 , and R_6 : (2,2) is in R_1 , R_3 , and R_4 .

Reflexive Relations

Definition: R is *reflexive* iff $(a,a) \in R$ for every element $a \in A$. Written symbolically, R is reflexive if and only if

$$
\forall x \big[x \in U \rightarrow (x, x) \in R \big]
$$

Example: The following relations on the integers are reflexive:

$$
R_1 = \{(a,b) | a \le b\},
$$

\n
$$
R_3 = \{(a,b) | a = b \text{ or } a = -b\},
$$

\n
$$
R_4 = \{(a,b) | a = b\}.
$$

\nThe following relations are not ref
\n
$$
R_2 = \{(a,b) | a > b\} \text{ (note that 3è 3)}
$$

If $A = \emptyset$ then the empty relation is reflexive vacuously. That is the empty relation on an empty set is reflexive!

lexive:

$$
R_2 = \{(a,b) | a > b\} \text{ (note that } 3\text{ è } 3),
$$

\n
$$
R_5 = \{(a,b) | a = b+1\} \text{ (note that } 3 \neq 3+1),
$$

\n
$$
R_6 = \{(a,b) | a+b \leq 3\} \text{ (note that } 4+4i \text{ } 3).
$$

Symmetric Relations

Definition: R is symmetric iff $(b,a) \in R$ whenever $(a,b) \in R$ for all $a, b \in A$. Written symbolically, R is symmetric if and only if

$$
\forall x \forall y \bigg[(x, y) \in R \rightarrow (y, x) \in R \bigg]
$$

Example: The following relations on the integers are symmetric:

$$
R_3 = \{(a,b)|a=b \text{ or } a=-b\},
$$

\n
$$
R_4 = \{(a,b)|a=b\},
$$

\n
$$
R_6 = \{(a,b)|a+b\leq 3\}.
$$

\nThe following are not symmetric:
\n
$$
R_1 = \{(a,b)|a\leq b\} \text{ (note that } 3\leq 4 \text{, but } 4\leq 3\},
$$

\n
$$
R_2 = \{(a,b)|a>b\} \text{ (note that } 4\leq 3 \text{, but } 3\geq 4\},
$$

\n
$$
R_5 = \{(a,b)|a=b+1\} \text{ (note that } 4=3+1 \text{, but } 3 \neq 4+1\}.
$$

Antisymmetric Relations

Definition: A relation R on a set A such that for all $a,b \in A$ if $(a,b) \in R$ and $(b,a) \in R$, then $a = b$ is called *antisymmetric*. Written symbolically, R is antisymmetric if and only if

$$
\forall x \forall y \bigg[(x, y) \in R \land (y, x) \in R \rightarrow x = y \bigg]
$$

Example: The following relations on the integers are antisymmetric:

$$
R_1 = \{(a,b) | a \le b\},
$$

\nFor any integer, if a $a \le b$ and
\n
$$
R_2 = \{(a,b) | a > b\},
$$

\n
$$
R_4 = \{(a,b) | a = b\},
$$

\n
$$
R_5 = \{(a,b) | a = b+1\}.
$$

\nThe following relations are notantsymmetric:
\n
$$
R_3 = \{(a,b) | a = b \text{ or } a = -b\}
$$

\n(note that both (1,-1) and (-1,1) belongs to R_3),
\n
$$
R_6 = \{(a,b) | a+b \le 3\} \text{ (note that both (1,2) and (2,1) belongs to } R_6 \text{)}.
$$

Transitive Relations

Definition: A relation R on a set A is called transitive if whenever (a,b) $\epsilon \in R$ and $(b,c) \in R$, then $(a,c) \in R$, for all $a,b,c \in A$. Written symbolically, R is transitive if and only if

$$
\forall x \forall y \forall z \bigg[(x, y) \in R \land (y, z) \in R \rightarrow (x, z) \in R \bigg]
$$

Example: The following relations on the integers are transitive:

$$
R_1 = \{(a,b) | a \le b\},
$$

\nFor every integer, $a \le b$
\n
$$
R_2 = \{(a,b) | a > b\},
$$

\n
$$
R_3 = \{(a,b) | a = b \text{ or } a = -b\},
$$

\n
$$
R_4 = \{(a,b) | a = b\}.
$$

\nFor every integer, $a \le b$
\nand $b \le c$, then $b \le c$.

The following are not transitive:

$$
R_{5} = \{(a,b) | a=b+1\}
$$
 (note that both (3,2) and (4,3) belongs to R_{5} , but not (3,3)),

$$
R_{6} = \{(a,b) | a+b \le 3\}
$$
 (note that both (2,1) and (1,2) belongs to R_{6} , but not (2,2)).

Combining Relations

Given two relations R_1 and R_2 , we can combine them using basic set operations to form new relations such as $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 - R_2$, and $R_2 - R_1$.

Example: Let $A = \{1,2,3\}$ and $B = \{1,2,3,4\}$. The relations $R_1 = \{(1,1), (2,2), (3,3)\}$ and $R_2 = \{(1,1), (1,2), (1,3), (1,4)\}$ can be combined using basic set operations to form new relations:

$$
R_1 \cup R_2 = \{(1,1), (1,2), (1,3), (1,4), (2,2)(3,3)\}
$$

\n
$$
R_1 \cap R_2 = \{(1,1)\} \qquad R_1 - R_2 = \{(2,2), (3,3)\}
$$

\n
$$
R_2 - R_1 = \{(1,2), (1,3), (1,4)\}
$$

Composition

Definition: Suppose

- • *R*¹ is a relation from a set *A* to a set *B*.
- *R*₂ is a relation from *B* to a set *C*.
- Then the *composition* (or *composite*) of R ₂ with ¹ *R* , is a relation from *A* to *C* where
- if (x, y) is a member of R_1 and (y, z) is a member of R_2 , then (*x*,*z*) is a member of $R_2 \circ R_1$.

Representing the Composition of Relations

Access the text alternative for slide images.

Representing Relations

Section 9.3

Section Summary 2

Representing Relations using Matrices.

Representing Relations using Digraphs.

Representing Relations Using Matrices

A relation between finite sets can be represented using a zeroone matrix.

Suppose R is a relation from $A = \{a_1, a_2, ..., a_m\}$ to $B = \{b_1, b_2, ..., b_n\}.$

The elements of the two sets can be listed in any particular \bullet arbitrary order. When $A = B$, we use the same ordering.

The relation R is represented by the matrix $M_{R} = |m_{ij}|$, where $m_{ij} = \begin{cases} 1 \text{ if } \left(a_i, b_j\right) \in R, \\ 0 \text{ if } \left(a_i, b_j\right) \notin R. \end{cases}$

The matrix representing R has a 1 as its (i, j) entry when a_i is related to b_i and a 0 if a_i is not related to b_i .

Examples of Representing Relations Using Matrices

Example 1: Suppose that $A = \{1,2,3\}$ and $B = \{1,2\}$. Let R be the relation from A to B containing (a,b) if $a \in A$, $b \in B$, and $a > b$. What is the matrix representing R (assuming the ordering of elements is the same as the increasing numerical order)?

Solution: Because $R = \{(2,1), (3,1), (3,2)\}\$, the matrix is

$$
M_R = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}
$$

Examples of Representing Relations Using Matrices

Example 2: Let $A = \{a_1, a_2, a_3\}$ and $B = \{b_1, b_2, b_3, b_4, b_5\}$. Which ordered pairs are in the relation R represented by the matrix

$$
M_R = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}
$$
?

Solution: Because R consists of those ordered pairs (a_i, b_i) with $m_{ii} = 1$, it follows that:

 $R = \{(a_1, b_2), (a_2, b_1), (a_2, b_3), (a_2, b_4), (a_3, b_1), (a_3, b_3), (a_3, b_5)\}.$

Matrices of Relations on Sets

If *R* is a reflexive relation, all the elements on the main diagonal of M_R are equal to 1.

R is a symmetric relation, if and only if $m_{ii} = 1$ whenever $m_{ij} = 1$. *R* is an antisymmetric relation, if and only if $m_{ij} = 0$ or $m_{ij} = 0$ when $i \neq j$.

Access the text alternative for slide images.

Example of a Relation on a Set

Example 3: Suppose that the relation R on a set is represented by the matrix

$$
M_R = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix}.
$$

Is R reflexive, symmetric, and/or antisymmetric?

Solution: Because all the diagonal elements are equal to 1, R is reflexive. Because M_R is symmetric, R is symmetric and not antisymmetric because both $m_{1,2}$ and $m_{2,1}$ are 1.

Representing Relations Using Digraphs

Definition: A *directed graph*, or *digraph*, consists of a set *V* of *vertices* (or *nodes*) together with a set *E* of ordered pairs of elements of *V* called *edges* (or *arcs*). The vertex *a* is called the *initial vertex* of the edge (*a*,*b*), and the vertex *b* is called the *terminal vertex* of this edge.

• An edge of the form (*a*,*a*) is called a *loop*.

Example 7: A drawing of the directed graph with vertices *a*, *b*, *c*, and *d*, and edges (*a*, *b*), (*a*, *d*), (*b*, *b*), (*b*, *d*), (*c*, a), (*c, b*), and (*d*, *b*) is shown here.

ess the text alternative for slide images

Examples of Digraphs Representing Relations

Example 8: What are the ordered pairs in the relation represented by this directed graph?

Solution: The ordered pairs in the relation are (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 3), (4, 1), and (4, 3).

Determining which Properties a Relation has from its Digraph *Reflexivity*: A loop must be present at all vertices in the graph.

Symmetry: If (*x,y*) is an edge, then so is (*y,x*)*.*

Antisymmetry: If (x, y) with $x \neq y$ is an edge, then (*y,x*) is not an edge.

Transitivity: If (*x,y*) and (*y,z*) are edges, then so is (*x,z*)*.*

Reflexive? No, not every vertex has a loop.

Symmetric? Yes (trivially), there is no edge from one vertex to another.

Antisymmetric? Yes (trivially), there is no edge from one vertex to another.

Transitive? Yes, (trivially) since there is no edge from one vertex to another.

Reflexive? No, there are no loops.

Symmetric? No, there is an edge from *a* to *b*, but not from *b* to *a.*

Antisymmetric? No, there is an edge from *d* to *b* and *b* to *d.*

Transitive? No, there are edges from *a* to *c* and from *c* to *b*, but there is no edge from *a* to *d.*

Reflexive? No, there are no loops.

Symmetric? No, for example, there is no edge from *c* to *a.*

Antisymmetric? Yes, whenever there is an edge from one vertex to another, there is not one going back.

Transitive? Yes.

Reflexive? No, there are no loops.

Symmetric? No, for example, there is no edge from *d* to *a.*

Antisymmetric? Yes, whenever there is an edge from one vertex to another, there is not one going back.

Transitive? Yes (trivially), there are no two edges where the first edge ends at the vertex where the second edge begins.

Powers of a Relation

Definition: Let *R* be a binary relation on *A*. Then the powers R^n of the relation R can be defined inductively by:

- Basis Step: $R^1 = R$.
- Inductive Step: $R^{n+1} = R^n \circ R$.

(*see the slides for Section* 9.3 *for further insights*)

The powers of a transitive relation are subsets of the relation. This is established by the following theorem:

Theorem 1: The relation *R* on a set *A* is transitive iff $R^n \subseteq R$ for $n = 1, 2, 3$

(*see the text for a proof via mathematical induction*)