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The Chinese Remainder Theorem 1

In the first century, the Chinese mathematician Sun-Tsu asked:

There are certain things whose number is unknown. When divided 
by 3, the remainder is 2; when divided by 5, the remainder is 3; 
when divided by 7, the remainder is 2. What will be the number of 
things?
This puzzle can be translated into the  solution of the system of 
congruences:

x ≡ 2 ( mod 3),
x ≡ 3 ( mod 5),

x ≡ 2 ( mod 7)?
We’ll see how the theorem that is known as the Chinese 
Remainder Theorem can be used to solve Sun-Tsu’s problem.
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The Chinese Remainder Theorem 2

Theorem 2: (The Chinese Remainder Theorem) Let 1 2, ,..., nm m m be
pairwise relatively prime positive integers greater than one and 1 2, ,..., na a a
arbitrary integers. Then the system
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º
has a unique solution  modulo m = 1 2

. . . .nm m m
(That is, there is a solution x with  0 ≤ x <m and all other solutions are 
congruent modulo m to this solution.)
Proof: We’ll  show that a solution exists by describing a way to construct 
the solution. Showing that the solution is unique modulo m is Exercise 30.
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The Chinese Remainder Theorem 3

To construct a solution first let = /k kM m m 1 2
. . .for = 1,2,..., and = .nk n m m m m

Since gcd( ),k km M = 1, by Theorem 1,  there is an integer ky , an inverse of kM
modulo km , such that

( )1 modk k kM y mº
Form the sum

1 1 1 2 2 2
. . .= .n n nx a M y a M y a M y+ + +

Note that because ( )M 0 modj kmº whenever j  ≠k , all terms except the kth
term in this sum are congruent to 0 modulo .km
Because ( )1 modk k kM y mº , we see that ( )modk k k k kx a M y a mº º , for k =
1,2,..., .n
Hence, x is a simultaneous solution to the n congruences.
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The Chinese Remainder Theorem 4

Example: Consider the 3 congruences from Sun-Tsu’s problem: 
x ≡ 2 ( mod 3),  x ≡ 3 ( mod 5), x ≡ 2 ( mod 7).
Let m = 3 5 7 105,M1 m/3 = 35,M3 =m/5 = 21,M3 =m/7 = 15× × = =

We see that
• 2 is an inverse of M1   = 35 modulo 3 since 35 2 2 2 1× º × º (mod 3).

• 1 is an inverse of M2   = 21 modulo 5 since 21 ≡  1 (mod 5).

• 1 is an inverse of M3   = 15 modulo 7 since 15 ≡ 1 (mod 7).

Hence, 
x = a1M1y1  + a2M2y2  + a3M3y3 
= 2 35 2 3 21 1 2 15 1× × + × × + × × = 233 ≡ 23 (mod 105)

We have shown that 23 is the smallest positive integer that is a 
simultaneous solution. Check it!
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Back Substitution
We can also solve systems of linear congruences with pairwise relatively prime moduli 
by rewriting a  congruences as  an equality using Theorem 4 in Section 4.1, substituting 
the value for the variable into another congruence, and continuing the process until we 
have worked through all the congruences. This method is known as back substitution.
Example: Use the method of back substitution to find all integers x such that x ≡ 1 (mod 
5), x ≡ 2 (mod 6), and x ≡ 3 (mod 7).
Solution: By Theorem 4 in Section 4.1, the first congruence can be rewritten as x = 5t +1, 
where t is an integer. 
• Substituting into the second congruence yields  5t +1 ≡ 2 (mod 6). 
• Solving this tells us that  t ≡ 5 (mod 6). 
• Using Theorem 4 again gives t = 6u + 5 where u is an integer. 
• Substituting this back into x = 5t +1,  gives x = ( )5 6 5 1 30 26.u u+ + +
• Inserting this into the third equation gives 30u + 26 ≡ 3 (mod 7).
• Solving this congruence tells us that u ≡ 6 (mod 7).
• By Theorem 4, u = 7v + 6, where v is an integer.
• Substituting this expression for u into x  =  30u + 26, tells us that x  =

= 210u + 206.
( )30 7 6 26v + +

Translating this back into a congruence we find the solution x ≡ 206 (mod 210). 
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Relations and Their 
Properties

Section 9.1
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Section Summary 1

Relations and Functions.

8



© McGraw Hill LLC

Binary Relations

Definition: A binary relation R from a set A to a 
set B is a subset .R A BÍ ´
Example:
• Let { }0,1,2A = and { }.,B = a b

•  ( ) ( ) ( ) ( ){ }0, , 0, , 1, , 2,a b a b is a relation from A to B.

• We can represent relations from a set A to a set B 
graphically or using a table:

Relations are more general than 
functions. A function is a relation 
where exactly one element of B is 
related to each element of A.

Access the text alternative for slide images.
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Binary Relations on a Set 1

Definition: A binary relation R on a set A is a 
subset of A × A or a relation from A to A.

Example:

• Suppose that { }, .,A = a b c Then ( ) ( ) ( ){ }, , , , ,R = a a a b a c
is a relation on A.

• Let { }1,  2,  3,  4 .A = The ordered pairs in the relation
( ){ }R = , div d s| i ea b a b are

( ) ( ) ( ) ( ) ( ) ( ) ( )1, 1 , 1, 2 , 1, 3 , 1, 4 , 2, 2 , 2, 4 , 3, 3 , and ( )4, 4 .
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Binary Relations on a Set 2

Question: How many relations are there on a set A? 

Solution: Because a relation on A is the same thing as  
a subset of A × A, we count the subsets of A × A. Since 
A × A has 2n elements when A has n elements, and a
set with m elements has 2m subsets, there are subsets
of A × A. Therefore, there are relations on a set A.
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