

Number Theory: Chinese Remainder Theorem, Section 4.4 and Relations, Section 9.1

CS261 Mathematical Foundations of CS Professor Leah Buechley Spring 2024 University of New Mexico

© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.

The Chinese Remainder Theorem,

In the first century, the Chinese mathematician Sun-Tsu asked:

There are certain things whose number is unknown. When divided by 3, the remainder is 2; when divided by 5, the remainder is 3; when divided by 7, the remainder is 2. What will be the number of things?

This puzzle can be translated into the solution of the system of congruences:

x ≡ 2 (mod 3),

x ≡ 3 (mod 5),

x ≡ 2 (mod 7)?

We'll see how the theorem that is known as the *Chinese Remainder Theorem* can be used to solve Sun-Tsu's problem.

The Chinese Remainder Theorem,

Theorem 2: (*The Chinese Remainder Theorem*) Let $m_1, m_2, ..., m_n$ be pairwise relatively prime positive integers greater than one and a_1 , a_2 ,..., a_n arbitrary integers. Then the system

 $x \equiv a^{}_1 \big(\text{mod } m^{}_1\big)$ $x \equiv a^{\,}_{2} \bigl(\text{mod} \; m^{\,}_{2} \bigr)$

.

.

.

 $x \equiv a_n \big(\text{mod } m_n \big)$ has a unique solution modulo $m = m_1 m_2 \cdots m_n$.

(That is, there is a solution x with 0 ≤ *x* <*m* and all other solutions are congruent modulo *m* to this solution.)

Proof: We'll show that a solution exists by describing a way to construct the solution. Showing that the solution is unique modulo *m* is Exercise 30.

The Chinese Remainder Theorem₃

To construct a solution first let $M_k = m/m_k$ for $k = 1, 2, ..., n$ and $m = m_1 m_2 \cdots m_n$. Since gcd(m_k , M_k) = 1, by Theorem 1, there is an integer V_k an inverse of M_k modulo m_k , such that

$$
M_k y_k \equiv 1 \, (\text{mod } m_k)
$$

Form the sum

.

.

.

$$
x = a_1 M_1 y_1 + a_2 M_2 y_2 + \cdots + a_n M_n y_n.
$$

Note that because $M_i \equiv 0 \pmod{m_k}$ whenever *j* ≠*k* , all terms except the *k*th term in this sum are congruent to 0 modulo m_k .

Because $M_k y_k \equiv 1 \pmod{m_k}$, we see that $x \equiv a_k^M M_k y_k \equiv a_k \pmod{m_k}$, for $k = 0$ $1, 2, ..., n$.

Hence, *x* is a simultaneous solution to the *n* congruences.

$$
x \equiv a_1 \pmod{m_1}
$$

$$
x \equiv a_2 \pmod{m_2}
$$

$$
x \equiv a_n \pmod{m_n}
$$

The Chinese Remainder Theorem.

Example: Consider the 3 congruences from Sun-Tsu's problem: $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$, $x \equiv 2 \pmod{7}$. Let m = $3.5.7 = 105$, M1 = m/3 = 35, M3 = m/5 = 21, M3 = m/7 = 15 We see that

- 2 is an inverse of M1 = 35 modulo 3 since $35 \cdot 2 \equiv 2 \cdot 2 \equiv 1 \pmod{3}$.
- 1 is an inverse of M2 = 21 modulo 5 since $21 \equiv 1 \pmod{5}$.
- 1 is an inverse of M3 = 15 modulo 7 since $15 \equiv 1 \pmod{7}$.

Hence,

 $x = a1M1y1 + a2M2y2 + a3M3y3$ $= 2 \cdot 35 \cdot 2 + 3 \cdot 21 \cdot 1 + 2 \cdot 15 \cdot 1 = 233 \equiv 23 \pmod{105}$

We have shown that 23 is the smallest positive integer that is a simultaneous solution. Check it!

Back Substitution

We can also solve systems of linear congruences with pairwise relatively prime moduli by rewriting a congruences as an equality using Theorem 4 in Section 4.1, substituting the value for the variable into another congruence, and continuing the process until we have worked through all the congruences. This method is known as *back substitution*. **Example**: Use the method of back substitution to find all integers *x* such that $x \equiv 1$ (mod

5), *x* ≡ 2 (mod 6), and *x* ≡ 3 (mod 7).

Solution: By Theorem 4 in Section 4.1, the first congruence can be rewritten as *x* = 5*t* +1, where *t* is an integer.

- Substituting into the second congruence yields 5*t* +1 ≡ 2 (mod 6).
- Solving this tells us that *t* ≡ 5 (mod 6).
- Using Theorem 4 again gives *t* = 6*u* + 5 where *u* is an integer.
- Substituting this back into $x = 5t + 1$, gives $x = 5(6u + 5) + 130u + 26$.
- Inserting this into the third equation gives 30*u* + 26 ≡ 3 (mod 7).
- Solving this congruence tells us that *u* ≡ 6 (mod 7).
- By Theorem 4, *u* = 7*v* + 6, where *v* is an integer.
- Substituting this expression for *u* into $x = 30u + 26$, tells us that $x = 30(7v + 6) + 26$ $= 210*u* + 206.$

Translating this back into a congruence we find the solution $x \equiv 206$ (mod 210).

Relations and Their Properties

Section 9.1

Section Summary 1

Relations and Functions.

Binary Relations

Definition: A *binary relation R* from a set *A* to a set *B* is a subset $R \subset A \times B$.

Example:

- Let $A = \{0, 1, 2\}$ and $B = \{a, b\}.$
- $\{(0, a), (0, b), (1, a), (2, b)\}$ is a relation from *A* to *B*.
- We can represent relations from a set *A* to a set *B* graphically or using a table:

Relations are more general than functions. A function is a relation where exactly one element of *B* is related to each element of *A.*

Binary Relations on a Set.

Definition: A binary relation *R on a set A* is a subset of *A* × *A* or a relation from *A* to *A*.

Example:

- Suppose that $A = \{a,b,c\}$. Then $R = \{(a,a),(a,b),(a,c)\}$ is a relation on *A*.
- Let $A = \{1, 2, 3, 4\}$. The ordered pairs in the relation $R = \{(a, b) | a \text{ divides } b\}$ are $(1, 1)$, $(1, 2)$, $(1, 3)$, $(1, 4)$, $(2, 2)$, $(2, 4)$, $(3, 3)$, and $(4, 4)$.

Binary Relations on a Set.

Question: How many relations are there on a set *A*?

Solution: Because a relation on *A* is the same thing as a subset of *A* × *A*, we count the subsets of *A* × *A*. Since $A \times A$ has n^2 elements when *A* has *n* elements, and a set with *m* elements has 2*^m* subsets, there are subsets of *A* × *A*. Therefore, there are relations on a set *A*.