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Greatest Common Divisor 1

Definition: Let a and b be integers, not both zero. The largest 
integer d such that |d a and also |d b is called the greatest
common divisor of a and b. The  greatest common divisor of 
a and b is denoted by gcd(a,b). 

One can find greatest common divisors of small numbers by 
inspection.

Example: What is the greatest common divisor of 24 and 36? 

Solution: gcd(24, 36) = 12

Example: What is the greatest common divisor of 17 and 22?

Solution: gcd(17,22) = 1
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Greatest Common Divisor 2

Definition: The integers a and b are relatively prime if their greatest 
common divisor is 1. 

Example: 17 and 22.

Definition: The integers 1 2, , ..., na a a are pairwise relatively prime if
( )gcd ,i ja a = 1 whenever 1 ≤ i<j ≤n.

Example: Determine whether the integers 10, 17 and 21 are pairwise 
relatively prime.

Solution: Because gcd(10,17) = 1, gcd(10,21) = 1, and gcd(17,21) = 1, 10, 
17, and 21 are pairwise relatively prime. 

Example: Determine whether the integers 10, 19, and 24 are pairwise 
relatively prime.

Solution: Because gcd(10,24) = 2, 10, 19, and 24 are  not pairwise 
relatively prime.
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Finding the Greatest Common Divisor 
Using Prime Factorizations

Suppose  the prime factorizations of a and b are:

1 2
1 2 ,na a a

na p p p= ! 1 2
1 2 ,nb b b

nb p p p= !

where each exponent is a nonnegative integer, and where all primes 
occurring in either prime factorization are included in both. Then:

( ) ( ) ( ) ( )1 1 2 2min , min , min ,
1 2gcd , ,na b a b a bn

na b p p p= !

This formula is valid since the integer  on the right (of the equals sign) 
divides both a and b. No larger integer can divide both a and b. 
Example:

3 2 3120 = 2 3 5 500 = 2 5× × ×
( ) ( ) ( ) ( )min 3,2 min 1,0 min 1,3 2 0 1gcd 120,500 = 2 3 5 = 2 3 5 = 20× × × ×

Finding the gcd of two positive integers using their prime factorizations 
is not efficient because there is no efficient algorithm for finding the 
prime factorization of a positive integer.
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Least Common Multiple
Definition: The least common multiple of the positive integers a and b is 
the smallest  positive integer that is divisible by both a and b. It is 
denoted by lcm(a,b).
The least common multiple can also be computed from the prime 
factorizations. 

( ) ( ) ( ) ( )1 1 2 2max , max , max ,
1 2lcm , ,na b a b a bn

na b p p p= !

This number is divided by both a and b and no smaller number  is divided 
by a and b.
Example: ( ) ( ) ( ) ( )max 3,4 max 5,3 max 2,03 5 2 4 3 4 5 2lcm 2 3 7 , 2 3 = 2 3 7 = 2 3 7
The greatest common divisor and the least common multiple of two 
integers are related by:
Theorem 5: Let a and b be positive integers. Then

ab = gcd(a,b) ×lcm(a,b)
(proof  is Exercise 31)
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Euclidean Algorithm 1

Euclid 
(325 B.C.E. – 265 B.C.E.)

The Euclidian algorithm is an efficient method 
for  computing the greatest common divisor 
of two integers. It is based on the idea that 
gcd(a,b) is equal to gcd(a,c) when a > b and c 
is the remainder when a is divided by b.

Example: Find  gcd(91, 287):

•  287 = 91 3 14× + Divide 287 by 91

•  91 = 14 6 7× + Divide 91 by 14

•  14 = 7 2 0× + Divide 14 by 7

Stopping condition

gcd(287, 91) = gcd(91, 14) =  gcd(14, 7)  = 7
6
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Euclidean Algorithm 2

The Euclidean algorithm expressed in pseudocode is:

procedure gcd(a, b: positive integers)
x := a
y := b
while   y ≠ 0
 r := x mod y
 x := y
 y := r
return x {gcd(a,b) is x}

In Section 5.3, we’ll see that the time complexity of the 
algorithm is O (log b), where a > b.
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Correctness of Euclidean Algorithm 1

Lemma 1: Let a = bq + r, where a, b, q, and r are integers. 
Then gcd(a,b) = gcd(b,r).

Proof:

• Suppose that d divides both a and b. Then d also divides a − bq 
= r (by Theorem 1 of Section 4.1). Hence, any common divisor of 
a and b must also be any  common divisor of b and r.

• Suppose that d divides both b and r. Then d also divides bq + r = 
a. Hence, any common divisor of a and b must also be a 
common divisor of b and r.

• Therefore, gcd(a,b) = gcd(b,r).
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Correctness of Euclidean Algorithm 2

Suppose that a and b are positive

integers  with a ≥ b.

0 1Let = and = .r a r b

Successive applications of the division 

algorithm yields:

0 1 1 2 2 1

1 2 2 3 3 2

2 1 1 2 1

1

0 ,
 0 ,

.

.

.
0 ,

.
n n n n n

n n n

r r q r r r
r r q r r r

r r q r r r
r r q
- - - -

-

= + £ <
= + £ <

= + £ <
=

Eventually, a remainder of zero occurs in the sequence of terms:
0 1 2

. . .= 0.a r r r> > > ³ The sequence can’t contain more than a
terms.
By Lemma 1 
gcd(a,b) = ( ) ( ) ( )0 1 1

. . .gcd , = gcd , = gcd ,0 = .n n n nr r r r r r-=
Hence the greatest common divisor is the last nonzero 
remainder in the sequence of divisions.
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gcds as Linear
Combinations

Étienne Bézout
(1730-1783)

Bézout’s Theorem: If a and b are positive
integers, then there exist integers s and t such
that  gcd(a,b) = sa + tb. 
(proof  in exercises of Section 5.2)
Definition: If a and b are positive integers, then integers s and 
t such that  gcd(a,b) = sa + tb are called Bézout coefficients of 
a and b. The equation  gcd(a,b) = sa + tb  is called Bézout’s 
identity. 
By Bézout’s Theorem,  the gcd of integers a and b can be 
expressed in the form  sa + tb where s and t are integers. This 
is a linear combination with integer coefficients of a and b.
• gcd(6,14) = (−2) 6 1 14.× + ×

10
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Graphs of Functions
Example: Express gcd(252,198) = 18 as a linear combination of 252 and 198.
Solution: First use the Euclidean algorithm to show gcd(252,198) = 18
i. 252 = 1 198 54× +
ii. 198 = 3 54 36× +
iii. 54 = 1 36 18× +
iv. 36 = 2 18×
Now working backwards, from  iii and i above 
• 18 = 54 − 1 36.×
• 36 = 198 − 3 54.×
Substituting the 2nd equation into the 1st yields:
• 18 = 54 − ( )1 198 3 54 = 4 54 1 198.× - × × - ×
Substituting 54 = 252 −  1 ·198 (from i)) yields:
• 18 = ( )4 252 1 198 1 198 = 252 198.4 5× - × - × × - ×
This method illustrated above is a two pass method. It first uses the Euclidian 
algorithm to find the gcd and then works backwards to express the gcd as a 
linear combination of the original two integers. A one pass method, called the 
extended Euclidean algorithm, is developed in the exercises.

11
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Consequences of Bézout’s Theorem
Lemma 2: If a, b, and c are positive integers such that gcd(a, b) = 1 
and | , then | .a bc a c
Proof:  Assume gcd(a, b) = 1 and |a bc
• Since gcd(a, b) = 1, by Bézout’s Theorem  there are integers s and t such that    

sa + tb = 1.
• Multiplying both sides of the equation by c, yields sac + tbc = c.
• From Theorem 1 of Section 4.1:

/a tbc (part ii) and a divides sac + tbc since / and /a sac a tbc (part i)

• We conclude /a c , since  sac + tbc = c.

Lemma 3: If p is prime and 1 2
...| , then |n ip a a a p a for some i.

(proof uses mathematical induction; see Exercise 64 of Section 5.1)
Lemma 3 is crucial in the proof of the uniqueness of prime 
factorizations.
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Uniqueness of Prime Factorization
We will prove that a prime factorization of a positive integer  where 
the primes are in nondecreasing order is unique. (This part of the 
fundamental theorem of arithmetic. The other part, which asserts 
that every positive integer has a prime factorization into primes, 
will be proved in Section 5.2.)

Proof: (by contradiction) Suppose that the positive integer n can be 
written as a product of primes in two distinct ways:

1 2 1 2
......= and = .s tn p p p n q q p

• Remove all common primes from the factorizations to get.

• By Lemma 3, it follows that divides, for some k, contradicting the 
assumption that and are distinct primes.

• Hence, there can be at most one factorization of n into primes in 
nondecreasing order.
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Dividing Congruences by an Integer

Dividing both sides of a valid congruence by an integer 
does not always produce a valid congruence (see Section 
4.1).

But dividing by an integer relatively prime to the modulus 
does produce a valid congruence: 

Theorem 7: Let m be a positive integer and let a, b, and c 
be integers. If ac ≡ bc (mod m) and gcd(c,m) = 1, then a ≡ 
b (mod m).

Proof: Since ac ≡ bc (mod m), m | ac − bc = c(a − b)   by
Lemma 2  and the fact that gcd(c,m) = 1, it follows that 
m | a − b.  Hence, a ≡ b (mod m).

14
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Solving Congruences

Section 4.4
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Section Summary 4

Linear Congruences.

The Chinese Remainder Theorem.

Computer Arithmetic with Large Integers (not 
currently included in slides, see text).

Fermat’s Little Theorem.

Pseudorandom.

Primitive Roots and Discrete Logarithms.
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Linear Congruences
Definition: A congruence of the form                          

ax ≡ b( mod m),
where m is a positive integer, a and b are integers, and x is a 
variable, is called a linear congruence.
The solutions to a linear congruence ax ≡ b( mod m) are  all 
integers x that satisfy the congruence.

Definition: An integer a such that aa ≡ 1( mod m) is said to be an
inverse of a modulo m.

Example: 5 is an inverse of 3 modulo 7 since 5 3× = 15 ≡ 1(mod 7).
One method of solving linear congruences makes use of  an 
inverse a , if it exists. Although we can not divide both sides of the

acongruence by a, we can multiply by to solve for x.
17
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Inverse of a modulo m
The following theorem guarantees that an inverse of a modulo m 
exists whenever a and m are relatively prime.  Two integers a and 
b are relatively prime when gcd(a,b) = 1.
Theorem 1: If a and m are relatively prime integers and m > 1, 
then an inverse of a modulo m exists. Furthermore, this inverse is 
unique modulo m. (This means that there is a unique positive 
integer

a
less than m that is an inverse of a modulo m and every

other inverse of a modulo m is congruent to
a

modulo m.)
Proof:  Since gcd(a,m) = 1, by Theorem 6 of Section 4.3, there are 
integers  s and t such that sa + tm = 1.
• Hence, sa + tm ≡ 1 ( mod m).
• Since tm ≡ 0 ( mod m), it follows that sa ≡ 1 ( mod m).
• Consequently, s is an inverse of a modulo m.
• The uniqueness of the inverse is Exercise 7.

18
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Finding Inverses 1

The Euclidean algorithm and Bézout coefficients gives us a 
systematic approaches to finding inverses. 

Example: Find an inverse of 3 modulo 7. 

Solution: Because gcd(3,7) = 1, by Theorem 1, an inverse of 3 
modulo 7 exists. 
• Using the Euclidian algorithm: 7 = 2 3 1.× +

• From this equation, we get −2 3 1 7× + × = 1, and see that −2  and 1 are
Bézout coefficients of 3 and 7.

• Hence, −2 is an inverse of 3 modulo 7. 

• Also every integer congruent to −2 modulo 7 is an inverse of 3 
modulo 7, i.e., 5, −9, 12, etc.
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Finding Inverses 2

Example: Find an inverse of 101 modulo 4620.

Solution: First use the Euclidian algorithm to show that  gcd(101,4620) = 1. 

42620 = 45 101 75× +

101 = 1 75 26× +

75 = 2 26 + 23×

26 = 1 23 3× +

23 = 7 3 2× +

3 = 1 2 1× +

2 = 2 1×

Since the last nonzero remainder 
is 1, gcd(101,4260) = 1

Working Backwards:

1 = 3 1 2- ×

( )1 = 3 1 23 7 3 = 1 23 8 3- × - × - × + ×

( )1 = 1 23 8 26 1 23 = 8 26 9 23- × + × - × × - ×

( )1 = 8 26 9 75 2 26 = 26 26 9 75× - × - × × - ×

( )1 = 26 101 1 75 9 75× - × - ×

= 26 101 35.75× -

( )1 = 26 101 35 42620 45 101× - × - ×

= 35 42620 1601 101- × + ×
Bézout coefficients : − 35 and 1601  1601 is an inverse of 101 modulo 42620

20
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Using Inverses to Solve Congruences
We can solve the congruence ax≡ b( mod m) by multiplying both sides 
by .a

Example:  What are the solutions of the  congruence 3x≡ 4( mod 7). 

Solution:  We found that −2 is an inverse of 3 modulo 7 (two slides back). 
We multiply both sides of the congruence by −2 giving 

2 3 2 4x- × º - × (mod 7).

Because  −6 ≡ 1 (mod 7)  and −8 ≡ 6 (mod 7), it follows that if x is a 
solution, then x ≡ −8 ≡ 6 (mod 7)

We need to determine if every x with x ≡ 6 (mod 7) is a solution. Assume 
that x ≡ 6 (mod 7). By Theorem 5 of Section 4.1, it follows that 3x ≡ 3.
6 = 18 ≡ 4( mod 7) which shows that all such x satisfy the congruence. 

The solutions are the integers x such that x ≡ 6 (mod 7), namely,  6,13,20
... and 1, 8, 15,...- - -
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