

Number Theory: Primes and Greatest Common Divisors

CS261 Mathematical Foundations of CS Professor Leah Buechley Spring 2024 University of New Mexico

Primes and Greatest Common Divisors

Section 4.3

Section Summary₃

Prime Numbers and their Properties.

Greatest Common Divisors and Least Common Multiples.

The Euclidian Algorithm.

Primes

Definition: A positive integer *p* greater than 1 is called *prime* if the only positive factors of *p* are 1 and *p*. A positive integer that is greater than 1 and is not prime is called *composite*.

Example: The integer 7 is prime because its only positive factors are 1 and 7, but 9 is composite because it is divisible by 3.

The Fundamental Theorem of Arithmetic

Theorem: Every positive integer greater than 1 can be written uniquely as a prime or as the product of two or more primes where the prime factors are written in order of nondecreasing size.

Examples:

- $100 = 2 \cdot 2 \cdot 5 \cdot 5 = 2^2 \cdot 5^2$.
- 641 = 641.
- 999 = $3 \cdot 3 \cdot 3 \cdot 37 = 3^3 \cdot 37$.

The Sieve of Eratosthenes 1

The *Sieve of Eratosthenes* can be used to find all primes not exceeding a specified positive integer. For example, begin with the list of integers between 1 and 100.

- Erastothenes (276-194 B.C.)
- a. Delete all the integers, other than 2, divisible by 2.
- b. Delete all the integers, other than 3, divisible by 3.
- c. Next, delete all the integers, other than 5, divisible by 5.
- d. Next, delete all the integers, other than 7, divisible by 7.
- e. Since all the remaining integers are not divisible by any of the previous integers, other than 1, the primes are:

{2,3,5,7,11,15,1719,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89, 97}

The Sieve of Eratosthenes 2

TABLE 1 The Sieve of Eratosthenes.																						
Integers divisible by 2 other than 2												Integers divisible by 3 other than 3										
receire un unuerune.											receive un unuerune.											
1	2	3	4	5	<u>6</u>	7	8	9	<u>10</u>		1	2	3	4	5	<u>6</u>	7	8	2	<u>10</u>		
11	12	13	<u>14</u>	15	16	17	18	19	<u>20</u>	1	1	<u>12</u>	13	<u>14</u>	<u>15</u>	16	17	<u>18</u>	19	<u>20</u>		
21	22	23	<u>24</u>	25	26	27	28	29	30	2	21	22	23	<u>24</u>	25	26	27	28	29	<u>30</u>		
31	32	33	<u>34</u>	35	36	37	38	39	<u>40</u>	3	1	<u>32</u>	<u>33</u>	34	35	<u>36</u>	37	38	<u>39</u>	40		
41	<u>42</u>	43	<u>44</u>	45	<u>46</u>	47	<u>48</u>	49	<u>50</u>	4	1	<u>42</u>	43	<u>44</u>	<u>45</u>	46	47	<u>48</u>	49	<u>50</u>		
51	<u>52</u>	53	<u>54</u>	55	56	57	58	59	<u>60</u>	5	51	52	53	<u>54</u>	55	<u>56</u>	57	58	59	<u>60</u>		
61	<u>62</u>	63	<u>64</u>	65	<u>66</u>	67	<u>68</u>	69	<u>70</u>	6	51	<u>62</u>	<u>63</u>	64	65	<u>66</u>	67	<u>68</u>	<u>69</u>	70		
71	<u>72</u>	73	<u>74</u>	75	<u>76</u>	77	<u>78</u>	79	<u>80</u>	7	1	<u>72</u>	73	<u>74</u>	<u>75</u>	<u>76</u>	77	<u>78</u>	79	<u>80</u>		
81	<u>82</u>	83	<u>84</u>	85	<u>86</u>	87	<u>88</u>	89	<u>90</u>	8	31	<u>82</u>	83	84	85	<u>86</u>	<u>87</u>	<u>88</u>	89	<u>90</u>		
91	<u>92</u>	93	<u>94</u>	95	<u>96</u>	97	<u>98</u>	99	<u>100</u>	9	91	<u>92</u>	<u>93</u>	<u>94</u>	95	<u>96</u>	97	<u>98</u>	<u>99</u>	100		
Inte	egers	divisi	ble b	y 5 ot	her tl	han 5				Integers divisible by 7 other than 7 receive												
receive an underline.												an underline; integers in color are prime.										
1	2	3	<u>4</u>	5	<u>6</u>	7	<u>8</u>	2	<u>10</u>		1	2	3	<u>4</u>	5	<u>6</u>	7	<u>8</u>	<u>9</u>	<u>10</u>		
11	12	13	14	<u>15</u>	16	17	18	19	20	1	1	<u>12</u>	13	14	15	16	17	18	19	20		
<u>21</u>	22	23	<u>24</u>	25	26	27	28	29	30	2	21	22	23	24	25	26	27	28	29	30		
31	32	33	34	35	36	37	38	39	= 40	3	1	32	33	34	35	36	37	38	39	40		
41	42	43	44	45	46	47	48	49	50	4	1	42	43	44	45	46	47	48	49	50		
51	52	53	54	55	56	57	58	59	60	5	51	52	53	<u>54</u>	55	56	57	58	59	60		
61	<u>62</u>	<u>63</u>	64	<u>65</u>	<u>66</u>	67	<u>68</u>	<u>69</u>	70	6	51	<u>62</u>	<u>63</u>	64	65	66	67	<u>68</u>	<u>69</u>	70		
71	72	73	74	75	76	77	78	79	80	7	1	72	73	74	75	76	77	78	79	80		
81	82	83	84	85	86	87	88	89	90	8	31	82	83	84	85	86	87	88	89	90		
91	92	<u>93</u>	<u>94</u>	95	<u>96</u>	97	98	<u>99</u>	100	9	01	92	<u>93</u>	<u>94</u>	95	<u>96</u>	97	<u>98</u>	<u>99</u>	100		

If an integer n is a composite integer, then it has a prime divisor less than or equal to \sqrt{n} .

To see this, note that if n = ab, then $a \le \sqrt{n}$ or $b \le \sqrt{n}$.

Trial division, a very inefficient method of determining if a number n is prime, is to try every integer $i \leq \sqrt{n}$ and see if n is divisible by i.

Infinitude of Primes

Theorem: There are infinitely many primes. (Euclid)

Proof: Assume finitely many primes: $p_1, p_2, ..., p_n$

Let $q = p_1 p_2 \cdots p_n + 1$

Either *q* is prime or by the fundamental theorem of arithmetic it is a product of primes.

- But none of the primes p_j divides q since if $p_j | q$, then p_j divides $q p_1 p_2 \cdots p_n = 1$.
- Hence, there is a prime not on the list $p_1, p_2, ..., p_n$. It is either q, or if q is composite, it is a prime factor of q. This contradicts the assumption that $p_1, p_2, ..., p_n$ are all the primes.

Consequently, there are infinitely many primes.

This proof was given by Euclid *The Elements*. The proof is considered to be one of the most beautiful in all mathematics. It is the first proof in *The Book,* inspired by the famous mathematician Paul Erdős' imagined collection of perfect proofs maintained by God.

Paul Erdős

(1913 - 1996)

(325 B.C.E. – 265 B.C.E.)

a is compos

Greatest Common Divisor 1

Definition: Let *a* and *b* be integers, not both zero. The largest integer *d* such that $d \mid a$ and also $d \mid b$ is called the greatest common divisor of *a* and *b*. The greatest common divisor of *a* and *b* is denoted by gcd(*a*,*b*).

One can find greatest common divisors of small numbers by inspection.

Example: What is the greatest common divisor of 24 and 36?

Solution: gcd(24, 36) = 12

Example: What is the greatest common divisor of 17 and 22?

Solution: gcd(17,22) = 1

Greatest Common Divisor 2

Definition: The integers *a* and *b* are *relatively prime* if their greatest common divisor is 1.

Example: 17 and 22.

Definition: The integers $a_1, a_2, ..., a_n$ are *pairwise relatively prime* if $gcd(a_i, a_j) = 1$ whenever $1 \le i < j \le n$.

Example: Determine whether the integers 10, 17 and 21 are pairwise relatively prime.

Solution: Because gcd(10,17) = 1, gcd(10,21) = 1, and gcd(17,21) = 1, 10, 17, and 21 are pairwise relatively prime.

Example: Determine whether the integers 10, 19, and 24 are pairwise relatively prime.

Solution: Because gcd(10,24) = 2, 10, 19, and 24 are not pairwise relatively prime.

Finding the Greatest Common Divisor Using Prime Factorizations

Suppose the prime factorizations of *a* and *b* are:

$$a = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}$$
, $b = p_1^{b_1} p_2^{b_2} \dots p_n^{b_n}$,

where each exponent is a nonnegative integer, and where all primes occurring in either prime factorization are included in both. Then:

$$gcd(a,b) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \dots p_n^{\min(a_n,b_n)}$$

This formula is valid since the integer on the right (of the equals sign) divides both *a* and *b*. No larger integer can divide both *a* and *b*. **Example**: $120 = 2^3 \cdot 3 \cdot 5$ $500 = 2^2 \cdot 5^3$

$$gcd(120,500) = 2^{min(3,2)} \cdot 3^{min(1,0)} \cdot 5^{min(1,3)} = 2^2 \cdot 3^0 \cdot 5^1 = 20$$

Finding the gcd of two positive integers using their prime factorizations is not efficient because there is no efficient algorithm for finding the prime factorization of a positive integer.

Least Common Multiple

Definition: The least common multiple of the positive integers a and b is the smallest positive integer that is divisible by both a and b. It is denoted by lcm(a,b).

The least common multiple can also be computed from the prime factorizations. $\max(a, b) \max(a, b) \max(a, b) \max(a, b) \max(a, b)$

$$\operatorname{Icm}(a,b) = p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} \dots p_n^{\max(a_n,bn)},$$

This number is divided by both *a* and *b* and no smaller number is divided by *a* and *b*.

Example:
$$\operatorname{lcm}(2^{3}3^{5}7^{2}, 2^{4}3^{3}) = 2^{\max(3,4)} 3^{\max(5,3)} 7^{\max(2,0)} = 2^{4} 3^{5} 7^{2}$$

The greatest common divisor and the least common multiple of two integers are related by:

Theorem 5: Let a and b be positive integers. Then

 $ab = gcd(a,b) \cdot lcm(a,b)$

(proof is Exercise 31)

Euclidean Algorithm 1

The Euclidian algorithm is an efficient method for computing the greatest common divisor of two integers. It is based on the idea that gcd(a,b) is equal to gcd(a,c) when a > b and cis the remainder when a is divided by b.

Euclid (325 B.C.E. – 265 B.C.E.)

Example: Find gcd(91, 287):

• $287 = 91 \cdot 3 + 14$ • $91 = 14 \cdot 6 + 7$ • $14 = 7 \cdot 2 + 0$ Stopping condition Divide 287 by 91 Divide 287 by 91

gcd(287, 91) = gcd(91, 14) = gcd(14, 7) = 7

Euclidean Algorithm 2

The Euclidean algorithm expressed in pseudocode is:

```
procedure gcd(a, b: positive integers)

x := a

y := b

while y \neq 0

r := x \mod y

x := y

y := r

return x \{gcd(a,b) \text{ is } x\}
```

In Section 5.3, we'll see that the time complexity of the algorithm is O (log b), where a > b.

Correctness of Euclidean Algorithm¹

Lemma 1: Let a = bq + r, where a, b, q, and r are integers. Then gcd(a,b) = gcd(b,r).

Proof:

- Suppose that *d* divides both *a* and *b*. Then *d* also divides *a bq* = *r* (by Theorem 1 of Section 4.1). Hence, any common divisor of *a* and *b* must also be any common divisor of *b* and *r*.
- Suppose that d divides both b and r. Then d also divides bq + r = a. Hence, any common divisor of a and b must also be a common divisor of b and r.
- Therefore, gcd(a,b) = gcd(b,r).

Correctness of Euclidean Algorithm²

Suppose that a and b are positive

integers with $a \ge b$.

Let $r_0 = a$ and $r_1 = b$.

Successive applications of the division

algorithm yields:

 $r_{n-2} = r_{n-1}q_{n-1} + r_2$ $0 \le r_n < r_{n-1}$, $r_{n-1} = r_nq_n$.

Eventually, a remainder of zero occurs in the sequence of terms: $a = r_0 > r_1 > r_2 > \cdots \ge 0$. The sequence can't contain more than aterms.

By Lemma 1

$$gcd(a,b) = gcd(r_0,r_1) = \cdots = gcd(r_{n-1},r_n) = gcd(r_n,0) = r_n.$$

Hence the greatest common divisor is the last nonzero remainder in the sequence of divisions.