

Basic Structures: Sets

CS261 Mathematical Foundations of CS Professor Leah Buechley Spring 2024 University of New Mexico

© McGraw Hill LLC. All rights reserved. No reproduction or distribution without the prior written consent of McGraw Hill LLC.

Chapter Summary

Sets

- The Language of Sets.
- Set Operations.
- Set Identities.

Functions

- Types of Functions.
- Operations on Functions.
- Computability.

Sequences and Summations

- Types of Sequences.
- Summation Formulae.

Set Cardinality

Countable Sets.

Matrices

• Matrix Arithmetic.

Section 2.1

Section Summary 1

Definition of sets.

Describing Sets.

- Roster Method.
- Set-Builder Notation.

Some Important Sets in Mathematics.

Empty Set and Universal Set.

Subsets and Set Equality.

Cardinality of Sets.

Tuples.

Introduction 1

Sets are one of the basic building blocks for the types of objects considered in discrete mathematics.

- Important for counting.
- Programming languages have set operations.

Set theory is an important branch of mathematics.

- Many different systems of axioms have been used to develop set theory.
- Here we are not concerned with a formal set of axioms for set theory. Instead, we will use what is called naïve set theory.

Sets

A set is an unordered collection of objects.

- the students in this class.
- the chairs in this room.

The objects in a set are called the *elements*, or *members* of the set. A set is said to *contain* its elements.

The notation $a \in A$ denotes that a is an element of the set A.

If *a* is not a member of *A*, write $a \notin A$.

Describing a Set: Roster Method

$$S = \{a, b, c, d\}$$

Order not important.

$$S = \{a,b,c,d\} = \{b,c,a,d\}$$

Each distinct object is either a member or not; listing more than once does not change the set.

$$S = \{a,b,c,d\} = \{a,b,c,b,c,d\}$$

Elipses (...) may be used to describe a set without listing all of the members when the pattern is clear.

$$S = \{a, b, c, d, \ldots, z\}$$

Roster Method

Set of all vowels in the English alphabet:

$$V = \{a, e, i, o, u\}$$

Set of all odd positive integers less than 10:

$$O = \{1, 3, 5, 7, 9\}$$

Set of all positive integers less than 100:

Set of all integers less than 0:

$$S = \{...., -3, -2, -1\}$$

Some Important Sets

- **N** = *natural numbers* = $\{0, 1, 2, 3...\}$
- **Z** = *integers* = {...,-3,-2,-1,0,1,2,3,...}
- $Z^{+} = positive integers = \{1, 2, 3,\}$
- **R** = set of *real numbers*.
- **R**⁺ = set of *positive real numbers*.
- **C** = set of *complex numbers*.
- **Q** = set of rational numbers.

Set-Builder Notation

Specify the property or properties that all members must satisfy:

 $S = \{x \mid x \text{ is a positive integer less than 100} \}$ $O = \{x \mid x \text{ is an odd positive integer less than 10} \}$ $O = \{x \in \mathbf{Z}^+ \mid x \text{ is odd and } x < 10 \}$

A predicate may be used:

 $S = \{x \mid P(x)\}$

Example: $S = \{x | Prime(x)\}$

Positive rational numbers:

$$\mathbf{Q}^+ = \{x \in \mathbf{R} \mid x = p / q, \text{ for some positive integers } p, q\}$$

Interval Notation

$$\begin{bmatrix} a,b \end{bmatrix} = \left\{ x \mid a \le x \le b \right\}$$

$$\begin{bmatrix} a,b \end{bmatrix} = \left\{ x \mid a \le x < b \right\}$$

$$\begin{pmatrix} a,b \end{bmatrix} = \left\{ x \mid a < x \le b \right\}$$

$$\begin{pmatrix} a,b \end{pmatrix} = \left\{ x \mid a < x < b \right\}$$

closed interval [a,b]

open interval (a,b)

Universal Set and Empty Set

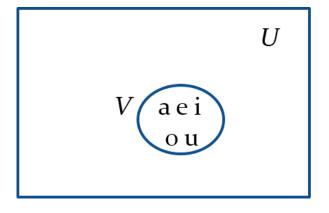
The *universal set U* is the set containing everything currently under consideration.

- Sometimes implicit.
- Sometimes explicitly stated.
- Contents depend on the context.

The empty set is the set with no

elements. Symbolized Ø, but {} also used.

John Venn (1834-1923) Cambridge, UK



Russell's Paradox

Let *S* be the set of all sets which are not members of themselves. A paradox results from trying to answer the question "Is *S* a member of itself?"

Related Paradox:

 Henry is a barber who shaves all people who do not shave themselves. A paradox results from trying to answer the question "Does Henry shave himself?"

Bertrand Russell (1872-1970) Cambridge, UK Nobel Prize Winner

Some things to remember

Sets can be elements of sets.

$$\{\{1,2,3\},a, \{b,c\}\}\$$

 $\{N,Z,Q,R\}$

The empty set is different from a set containing the empty set.

$$\emptyset\neq\left\{\emptyset\right\}$$

Set Equality

Definition: Two sets are *equal* if and only if they have the same elements.

- Therefore if A and B are sets, then A and B are equal if and only if ∀x(x ∈ A ↔ x ∈ B)
- We write A = B if A and B are equal sets.

 $\{1,3,5\} = \{3, 5, 1\}$ $\{1,5,5,5,3,3,1\} = \{1,3,5\}$

Subsets

Definition: The set *A* is a *subset* of *B*, if and only if every element of *A* is also an element of *B*.

- The notation A ⊆ B is used to indicate that A is a subset of the set B.
- $A \subseteq B$ holds if and only if $\forall x (x \in A \rightarrow x \in B)$ is true.
 - 1. Because $a \in \emptyset$ is always false, $\emptyset \subseteq S$, for every set S.
 - 2. Because $a \in S \rightarrow a \in S$, $S \subseteq S$, for every set S.

Showing a Set is or is not a Subset of Another Set

Showing that A is a Subset of B: To show that $A \subseteq B$, show that if x belongs to A, then x also belongs to B.

Showing that A is not a Subset of B: To show that A is not a subset of $B, A \subseteq B$, find an element $x \in A$ with $x \notin B$. (Such an x is a counterexample to the claim that $x \in A$ implies $x \in B$.)

Examples:

- 1. The set of all computer science majors at your school is a subset of all students at your school.
- 2. The set of integers with squares less than 100 is not a subset of the set of nonnegative integers.

Another look at Equality of Sets

Recall that two sets A and B are *equal*, denoted by A = B, iff

$$\forall x (x \in A \leftrightarrow x \in B)$$

Using logical equivalences we have that A = B iff

$$\forall x \Big[\big(x \in A \to x \in B \big) \land \big(x \in B \to x \in A \big) \Big]$$

This is equivalent to

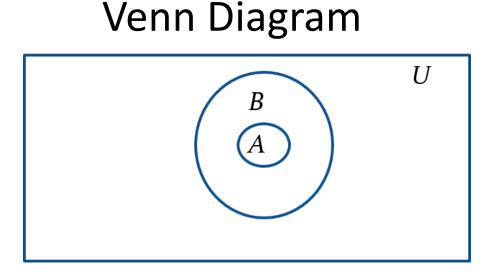
$$A \subseteq B$$
 and $B \subseteq A$

Proper Subsets

Definition: If $A \subseteq B$, but $A \neq B$, then we say A is a *proper subset* of B, denoted by $A \subset B$. If $A \subset B$, then

$$\forall x \quad (x \in A \rightarrow x \in B) \land \exists x (x \in B \land x \notin A)$$

is true.



Set Cardinality

Definition: If there are exactly n distinct elements in *S* where *n* is a nonnegative integer, we say that *S* is *finite*. Otherwise it is *infinite*.

Definition: The *cardinality* of a finite set *A*, denoted by |A|, is the number of (distinct) elements of *A*.

Examples:

- 1. $|\phi| = 0$
- 2. Let S be the letters of the English alphabet. Then |S| = 26
- 3. $|\{1,2,3\}|=3$
- 4. $|\{\phi\}| = 1$
- 5. The set of integers is infinite.

Power Sets

Definition: The set of all subsets of a set A, denoted P(A), is called the *power set* of A.

Example: If $A = \{a, b\}$ then

$$P(A) = \{ \emptyset, \{a\}, \{b\}, \{a,b\} \}$$

If a set has *n* elements, then the cardinality of the power set is 2^n . (In Chapters 5 and 6, we will discuss different ways to show this.)

Tuples

The ordered n-tuple $(a_1, a_2, ..., a_n)$ is the ordered collection that has a_1 as its first element and a_2 as its second element and so on until a_n as its last element.

Two n-tuples are equal if and only if their corresponding elements are equal.

2-tuples are called *ordered pairs*.

The ordered pairs (a,b) and (c,d) are equal if and only if a = c and b = d.

Cartesian Product₁

Definition: The Cartesian Product of two sets A and B, denoted by $A \times B$ is the set of ordered pairs (a,b) where $a \in A$ and $b \in B$.

$$A \times B = \left\{ (a, b) \mid a \in A \land b \in B \right\}$$

René Descartes (1596-1650)

Example:

$$A = \{a, b\} B = \{1, 2, 3\}$$
$$A \times B = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$$

Definition: A subset *R* of the Cartesian product $A \times B$ is called a *relation* from the set A to the set B. (Relations will be covered in depth in Chapter 9.)

Cartesian Product₂

Definition: The cartesian products of the sets A = A denoted by A = A is t

 A_1, A_2, \dots, A_n , denoted by $A_1 \times A_2 \times \dots \times A_n$, is the set of ordered *n*-tuples (a_1, a_2, \dots, a_n) where a_i belongs to A_i for $i = 1, \dots n$.

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \cdots, a_n) \mid a_i \in A_i \text{ for } i = 1, 2, \dots n\}$$

Example: What is $A \times B \times C$ where $A = \{0,1\}, B = \{1,2\}$ and $C = \{0,1,2\}$

Solution: $A \times B \times C = \{(0,1,0), (0,1,1), (0,1,2), (0,2,0), (0,2,1), (0,2,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,2,2)\}$

Truth Sets of Quantifiers

Given a predicate P and a domain D, we define the *truth set* of P to be the set of elements in Dfor which P(x) is true. The truth set of P(x) is denoted by

$$\left\{x \in D \,|\, P(x)\right\}$$

Example: The truth set of P(x) where the domain is the integers and P(x) is "|x| = 1" is the set $\{-1,1\}$