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Summary

Valid Arguments and Rules of Inference.

Proof Methods.

Proof Strategies.
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Rules of Inference
Section 1.6
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Section Summary 1

Valid Arguments.

Inference Rules for Propositional Logic.

Using Rules of Inference to Build Arguments.

Rules of Inference for Quantified Statements.

Building Arguments for Quantified Statements.
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Revisiting the Socrates Example

We have the two premises:

• “All men are mortal.”

• “Socrates is a man.”

And the conclusion:

• “Socrates is mortal.”

How do we get the conclusion from the 
premises?
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The Argument

We can express the premises (above the line) 
and the conclusion (below the line) in predicate 
logic as an argument:

( ) ( )( )
( )

( )   

x Man x Mortal x
Man Socrates
Mortal Socrates

" ®

\

We will see shortly that this is a valid argument.
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Valid Arguments 1

We will show how to construct valid arguments 
in two stages; first for propositional logic and 
then for predicate logic. The rules of inference 
are the essential building block in the 
construction of valid arguments.
1. Propositional Logic.

Inference Rules.

2. Predicate Logic.
Inference rules for propositional logic plus additional 
inference rules to handle variables and quantifiers.
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Arguments in Propositional Logic
A argument in propositional logic is a sequence of propositions. 
All but the final proposition are called premises. The last 
statement is the conclusion.

The argument is valid if the premises imply the conclusion. An 
argument form is an argument that is valid no matter what 
propositions are substituted into its propositional variables.

If the premises are 1 2, , ..., np p p and the conclusion is q then
( )1 2 ... np p pÙ Ù Ù → q is a tautology.

Inference rules are all argument simple argument forms that will 
be used to construct more complex argument forms.
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Rules of Inference for Propositional 
Logic: Modus Ponens

   p q®

\
p
q

Corresponding Tautology:
( )( )q p q qÙ ® ®

Example:
Let p be “It is snowing.”
Let q be “I will study discrete math.”
“If it is snowing, then I will study discrete math.”
“It is snowing.”
“Therefore , I will study discrete math.”
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Modus Tollens

   p q®
¬
\¬

p
q

Corresponding Tautology:
( )( )®¬ Ù ®¬q p q q

Example:
Let p be “it is snowing.”
Let q be “I will study discrete math.”
“If it is snowing, then I will study discrete math.”
“I will not study discrete math.”
“Therefore , it is not snowing.”
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Hypothetical Syllogism

   p q®
q r
p r
®

\ ®

Corresponding Tautology:
( ) ( )( ) ( )p q q r p r® Ù ® ® ®

Example:
Let p be “it snows.”
Let q be “I will study discrete math.”
Let r be “I will get an A.”
“If it snows, then I will study discrete math.”
“If I study discrete math, I will get an A.”
“Therefore , If it snows, I will get an A.”
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Disjunctive Syllogism

Ú   p q
¬
\
p
q

Corresponding Tautology:
( )( )p p q q¬ Ù Ú ®

Example:
Let p be “I will study discrete math.”
Let q be “I will study English literature.”
“I will study discrete math or I will study English 
literature.”
“I will not study discrete math.”
“Therefore , I will study English literature.”
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Addition

p
p q\ Ú

Corresponding Tautology:
( )p p q® Ú

Example:
Let p be “I will study discrete math.”
Let q be “I will visit Las Vegas.”
“I will study discrete math.”
“Therefore, I will study discrete math or I will 
visit 
Las Vegas.”
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Simplification

Ù
\
p q

p

Corresponding Tautology:
( )p q pÙ ®

Example:
Let p be “I will study discrete math.”
Let q be “I will study English literature.”
“I will study discrete math and English 
literature”
“Therefore, I will study discrete math.”
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Conjunction

      p

q
p q\ Ù

Corresponding Tautology:
( ) ( )( ) ( )p q p qÙ ® Ù

Example:
Let p be “I will study discrete math.”
Let q be “I will study English literature.”
“I will study discrete math.”
“I will study English literature.”
“Therefore, I will study discrete math and I will 
study English literature.”

15



© McGraw Hill LLC

Resolution
  p r¬ Ú

p q
q r
Ú

\ Ù

Resolution plays an important role in AI 
and is used in Prolog.

Corresponding Tautology:

( ) ( )( ) ( )p r p q q r¬ Ú Ù Ú ® Ú
Example:
Let p be “I will study discrete math.”
Let r be “I will study English literature.”
Let q be “I will study databases.”
“I will not study discrete math or I will study English literature.”
“I will study discrete math or I will study databases.”
“Therefore, I will study databases or I will study English 
literature.”
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Using the Rules of Inference to Build 
Valid Arguments

A valid argument is a sequence of statements. Each statement is 
either a premise or follows from previous statements by rules of 
inference. The last statement is called conclusion.

A valid argument takes the following form:

1S

2S
.

.

.

Sn

C\
17
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Valid Arguments 2

Example 1: From the single proposition

( )p p qÙ ®

Show that q is a conclusion.
Solution:

( )
( )
( )

1.              Premise
2.                                Simplification using 1
3.                        Simplification using 1
4.                     

p p q
p
p q
q

Ù ®

®

Step                              Reason

( ) ( )           Modus Ponens using 2  and 3
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Valid Arguments 3

Example 2:

With these hypotheses:

“It is not sunny this afternoon and it is colder than yesterday.”

“We will go swimming only if it is sunny.”

“If we do not go swimming, then we will take a canoe trip.”

“If we take a canoe trip, then we will be home by sunset.”

Using the inference rules, construct a valid argument for the conclusion:

“We will be home by sunset.”

Solution: 

1. Choose propositional variables:

p : “It is sunny this afternoon.” r : “We will go swimming.” t : “We will be home by sunset.”
q : “It is colder than yesterday.”s  : “We will take a canoe trip.” 

2. Translation into propositional logic:

Hypotheses: , ,  ,  
Conclusion: 

p q r p r s s t
t
¬ Ù ® ¬ ® ®

Continued on next slide à
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Valid Arguments 4

3. Construct the Valid Argument.

( )

( ) ( )

1.                Premise
2.                      Simplification using 1
3.                 Premise
4.                      Modus tollens using 2  and 3
5.   

p q
p

r p
r
r s

¬ Ù
¬
®
¬
¬ ®

Step                      Reason

( ) ( )

( ) ( )

           P remise
6.                         Modus ponens using 4  and 5
7.                  Premise
8.                         Modus ponens using 6  and 7

s
s t
t
®
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Handling Quantified Statements

Valid arguments for quantified statements are a 
sequence of statements. Each statement is either 
a premise or follows from previous statements 
by rules of inference which include:

• Rules of Inference for Propositional Logic.

• Rules of Inference for Quantified Statements.

The rules of inference for quantified statements 
are introduced in the next several slides.
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Universal Instantiation (UI)

( )
( )

"
\
xP x
P c

Example:

Our domain consists of all dogs and Fido is a dog.

“All dogs are cuddly.”

“Therefore, Fido is cuddly.”
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Universal Generalization (UG)

( )
( )

 for an arbitrary P c c
xP x\"

Used often implicitly in Mathematical Proofs.
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Existential Instantiation (EI)

( )
( )

$
\  for some element 

xP x
P c c

Example:

“There is someone who got an A in the course.”

“Let’s call her a and say that a got an A”
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Existential Generalization (EG)

( )
( )\$

 for some element P c c
xP x

Example:

“Michelle got an A in the class.”

“Therefore, someone got an A in the class.”
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Using Rules of Inference 1

Example 1: Using the rules of inference, construct a valid argument to show that
“John Smith has two legs”

is a consequence of the premises:
“Every man has two legs.” “John Smith is a man.”

Solution: Let M(x) denote “x is a man” and L(x) “ x has two legs” and let John 
Smith be a member of the domain. 

Valid Argument:

( ) ( )( )
( ) ( ) ( )
( )
( )

1.         Premise
2.  L                UI from 1
3.                              Premise
4.                                Modus Ponens using 

x M x L x
M J J
M J
L J

" ®
®

Step                                    Reason

( ) ( )2  and 3
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Using Rules of Inference 2

Example 2: Use the rules of inference to construct a valid argument showing that the conclusion

“Someone who passed the first exam has not read the book.” 

follows from the premises

“A student in this class has not read the book.”

“Everyone in this class passed the first exam.”

Solution: Let C(x) denote  “x is in this class,” B(x) denote  “ x has  read the book,” and P(x) denote   
“x passed the first exam.”

First we translate the

premises and conclusion 

into symbolic form.

( ) ( )( )
( ) ( )( )
( ) ( )( )

x C x B x

x C x P x

x P x B x

$ Ù¬

" ®

\$ Ù¬

Continued on next slide à
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Using Rules of Inference 3

Valid Argument:

( ) ( )( )
( ) ( ) ( )
( ) ( )

( ) ( )( )
( ) ( )

1.      P  remise
2.  B              EI from 1
3.                             Simplification from 2
4.      P remise
5.               

x C x B x
C a a
C a
x C x P x

C a a

$ Ù¬
Ù¬

" ®
®

Step                                  Reason

P ( )
( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )( ) ( )

UI from 4
6.                             MP from 3  and 5
7.                          Simplification from 2
8.              Conj from 6  and 7
9.       EG from 8

P a
B a

P a a
x P x B x

¬
Ù¬

$ Ù¬
B
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Returning to  the Socrates Example

( ) ( )( )
( )

( )

" ®

\    

x Man x Mortal x
Man Socrates
Mortal Socrates

29



© McGraw Hill LLC

Solution for Socrates Example
Valid Argument

( ) ( )( )
( ) ( ) ( )
( )

1.                    Premise

2.    UI from 1
3.                                  

x Man x Mortal x

Mam Socrates Mortal Socrates
Mam Socrates

" ®

®

Step                                                           Reason

( ) ( ) ( )
     Premise

4.                                    MP from 2  and 3Mortal Socrates
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Universal Modus Ponens

Universal Modus Ponens combines universal 
instantiation and modus ponens into one rule.

( ) ( )( )
( )

( )

" ®

\

,  where  is a particular
element in the domain

x P x Q x

P a a

Q a

This rule could be used in the Socrates example.
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Introduction to Proofs

Section 1.7
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Section Summary 2

Mathematical Proofs.

Forms of Theorems.

Direct Proofs.

Indirect Proofs.

• Proof of the Contrapositive.

• Proof by Contradiction.
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Proofs of Mathematical Statements
A proof is a valid argument that establishes the truth of a 
statement.
In math, CS, and other disciplines, informal proofs which are 
generally shorter, are generally used.
• More than one rule of inference are often used in a step.
• Steps may be skipped.
• The rules of inference used are not explicitly stated.
• Easier for to understand and to explain to people.
• But it is also easier to introduce errors.

Proofs have many practical applications:
• verification that computer programs are correct.
• establishing that operating systems are secure.
• enabling programs to make inferences in artificial intelligence.
• showing that system specifications are consistent.
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Definitions

A theorem is a statement that can be shown to be true using:
• definitions.

• other theorems.

• axioms (statements which are given as true).

• rules of inference.

A lemma is a ‘helping theorem’ or a result which is needed to 
prove a theorem.
A corollary is a result which follows directly from a theorem.
Less important theorems are sometimes called propositions.
A conjecture is a statement that is being proposed to be true. 
Once a proof of a conjecture is found, it becomes a theorem. It 
may turn out to be false.
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Forms of  Theorems 
Many theorems assert that a property holds for all elements in a 
domain, such as the integers, the real numbers, or some of the 
discrete structures that we will study in this class.

Often the universal quantifier (needed for a precise statement of 
a theorem) is omitted by standard mathematical convention.

For example, the statement:

“If x > y, where x and y are positive real numbers, then >2 2x y ”

really means

“For all positive real numbers x and y, if x > y, then >2 2.x y ”
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Proving Theorems

Many theorems have the form:
( ) ( )( )x P x Q x" ®

To where c is an arbitrary element of the 
domain, ( ) ( )P c Q c®

By universal generalization the truth of the 
original formula follows.

So, we must prove something of the form: p q®
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Proving Conditional Statements: p → q
Trivial Proof: If we know q is true, then

p → q is true as well.

“If it is raining then 1=1.”

Vacuous Proof: If we know p is false then

p → q is true as well.

“If I am both rich and poor then 2 + 2 = 5.”

[ Even though these examples seem silly, both trivial and 
vacuous proofs are often used in mathematical induction, as we 
will see in Chapter 5) ]
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Even and Odd Integers

Definition: The integer n is even if there exists 
an integer k such that n = 2k, and n is odd if 
there exists an integer k, such that n = 2k + 1. 
Note that every integer is either even or odd and 
no integer is both even and odd.

We will need this basic fact about the integers in 
some of the example proofs to follow. We will 
learn more about the integers in Chapter 4.
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Proving Conditional Statements: p → q 1

Direct Proof: Assume that p is true. Use rules of inference, axioms, 
and logical equivalences to show that q must also be true.

Example: Give a direct proof of the theorem “If n is an odd integer, 
then 2n is odd.”

Solution: Assume that n is odd. Then n = 2k + 1 for an integer k. 
Squaring both sides of the equation, we get:

( ) ( )= + = + + = + + = +22 2 22 1 4 4 1 2 2 2 1 2 1,n k k k k k r
where r = +22 2k k , an integer.

We have proved that if n is an odd integer, then 2n is an odd
integer.

(marks the  end of the proof. Sometimes QED is used 
instead.)
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Proving Conditional Statements: p → q 2

Definition: The real number r is rational if there exist integers p
and q where q≠0 such that = /r p q.

Example: Prove that the sum of two rational numbers is rational.
Solution: Assume r and s are two rational numbers. Then there 
must be integers p, q and also t, u such that

/ ,    / ,    0,    0r p q s t u u q
p t pu qt vr s
q u qu w

= = ¹ ¹
+

+ = + = =

Thus the sum is rational.

where v = pu + qt 

w = qu ≠ 0

41



© McGraw Hill LLC

Proving Conditional Statements: p → q 3

Proof by Contraposition: Assume ¬q and show ¬p is true also. 
This is sometimes called an indirect proof method. If we give a 
direct proof of ¬q → ¬p then we have a proof of p → q.

Why does this work?

Example: Prove that if n is an integer and 3n + 2 is odd, then n is 
odd.

Solution: Assume n is even. So, n = 2k for some integer k. Thus 

3n + 2 = 3(2k) + 2 =6k +2 = 2(3k + 1) = 2j  for j = 3k +1

Therefore 3n + 2 is even. Since we have shown ¬q → ¬p , p → q
must hold as well. If n is an integer and 3n + 2 is odd (not even) , 
then n is odd (not even).
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Proving Conditional Statements: p → q 4

Example: Prove that for an integer n, if 2n is odd, then
n is odd.

Solution: Use proof by contraposition. Assume n is 
even (i.e., not odd). Therefore, there exists an integer k
such that n = 2k. Hence,

( )= =2 2 24 2 2n k k

and 2n is even(i.e., not odd).

We have shown that if n is an even integer, then 2n is
even. Therefore by contraposition, for an integer n, if 2n
is odd, then n is odd.
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Proving Conditional Statements: p → q 5

Proof by Contradiction: (AKA reductio ad absurdum).

To prove p, assume ¬p and derive a contradiction such as    
p ∧ ¬p. (an indirect form of proof). Since we have shown 
that ¬p →F is true , it follows that the contrapositive T→p
also holds.

Example: Prove that if you pick 22 days from the calendar, 
at least 4 must fall on the same day of the week.

Solution: Assume that no more than 3 of the 22 days fall on 
the same day of the week. Because there are 7 days of the 
week, we could only have picked 21 days. This contradicts 
the assumption that we have picked 22 days.
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Proof by Contradiction 1

A preview of  Chapter 4.

Example: Use a proof by contradiction to give a proof that √2 is irrational.

Solution: Suppose √2 is rational. Then there exists integers a and b with √2  =
a/b, where b≠ 0 and a and b have no common factors (see Chapter 4). Then

=
2

22 a
b =2 22b a

Therefore 2a must be even. If 2a is even then a must be even (an exercise).
Since a is even, a = 2c  for some integer c. Thus,

=2 22 4b c =2 22b c

Therefore 2b is even. Again then b must be even as well.

But then 2 must divide both a and b. This contradicts our assumption that a
and b have no common factors. We have proved by contradiction that our 
initial assumption must be false and  therefore √2 is irrational.
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Proof by Contradiction 2

A preview of Chapter 4.
Example: Prove that there is no largest prime number.
Solution: Assume that there is a largest prime number. 
Call it .np Hence, we can list all the primes 2,3,.., .np Form

= ´ ´ ´ +!1 2 1nr p p p

None of the prime numbers on the list divides r. 
Therefore, by a theorem in Chapter 4, either r is prime or 
there is a smaller prime that divides r. This contradicts 
the assumption that there is a largest prime. Therefore, 
there is no largest prime.
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